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Unlike in fast (diffusion-limited) aggregation, the rate 
of doublet formation in slow (reaction-limited) coagulation 
is intimately linked to the details of the interaction 
potential between the colliding monomers. The classical 
Derja&uin-Landau-Verwey-Overbeek (DLVO) theory 
states that this total interaction potential' can be expressed 
as a sum of two contributions, namely 

(1) 
where h is the distance between the surfaces of the 
particles. The first contribution UW is due to van der 
Waals attraction which can be approximated for Spherical 
particles as Uw(h) = -Aa/l2h for h << a ,  where a is the 
particle radius and A the Hamaker constant. The second 
contribution is the electrostatic potential U(h) which 
depends on parameters such as the charge 2 and the size 
of the particles, ita surface potential a,, and the inverse 
Debye screening length K. The overall potential V(h) itself 
has a maximum at h = h, for ionic strengths below the 
critical coagulation concentration. 

The doublet formation rate constant k is defined by 
Smoluchowski's equation2 dcddt = k q 2 ,  where c1 and c2 
are the number densities of monomers and dimers, 
respectively. In the limit of fast aggregation where V(h) 
= 0, the rate constant is given by kfMt = 8 m D ,  where D 
is the single particle diffusion coefficient. The actual 
coagulation rate constant kdow is commonly expressed in 
terms of the stability ratio W = kf~t/kdOw, When the 
dynamics of the motion of the spherical particles is 
described by pure diffusion, Fuchs has shown that's3 

(2) 

where 118 = ~ B T  is the thermal energy unit. In the slow 
aggregation regime the structure of the DLVO potentials 
makes the integrand in eq 2 a sharply peaked function, 
and therefore only values in the neighborhood of the 
maximum of the potential V(h) at h = h, contribute to the 
integral. In this case a steepest descent approximation 
allows eq 2 to be written as a Gaussian integral giving the 
result4 

V(h) = Uw(h) + U(h) 

W = 2 ~ K e @ ~ ' ~ ' ( h  + 2 ~ ) - ~  dh 

w N *'f2eBv(h3(2a28182v/ah21h=h,)-1'2 (3) 

We have used the fact that UK >> 1 for all realistic systems. 
In order to proceed, one has to solve for the barrier location 
h # ( ~ )  given by 

?Ih, = 0 (4) 

This is a transcendental equation for most potentials. 
Reerink and Overbeek' have circumvented this rather 
uncomfortable situation by expanding W(K)  around a 
reference point KO for one special case of the electrostatic 
potential. The reference point KO was chosen such that 
the potential barrier V(h,) vanishes. In the following we 
generalize their approach to arbitrary electrostatic PO- 
tentials of the form U(x, K )  where X = Kh. Using this form 
in eqs 1 and 4 we obtain 

Aa~/12  = -X:U'(X,,K) (5 )  

where the prime denotes a partial differentiation with 
respect to x .  This equation determines x ,  = hllK as a 
function of K .  At the reference point KO introduced above 
x s  has the value of xo; the two quantities KO and xo are 
determined by the following set of nonlinear equations 

X O  = -UdU( (6) 

C Z K ~  = 12xoUdA (7) 

The subscript indicates evaluation at xo  and KO. 

We now expand In W into a Taylor series in In K around 
the reference point In KO, keeping terms up to first order 

The zero-order term follows from inserting eqs 6 and 7 
into eq 3 and can be expressed as 

Since the linear coefficient in eq 8 

(10) 

the stability ratio given by eq 8 decreases as K increases 
and becomes unity at 

(11) 

The value of K = K~ determines the critical coagulation 
concentration. In several textbook discussions1 this con- 
dition is identified with K = KO. As KO > K~ this holds only 
in a first approximation. 

Figure 1 explains the general features of the present 
approximation scheme for the calculation of stability ratios 
where In W is plotted as a function of In UK. The exact 
stability ratio shows a crossover from slow to fast aggre- 
gation with increasing K (thin line A). The thick line B is 
the linear Taylor series approximation (eq 8) around the 
reference point KO. The value of the stability ratio at the 
reference point is given by eq 9 and the negative slope SO. 
The critical K~ given by eq 11 is located where the Taylor 
approximation equals zero. 

Our analytical approximation of eq 2 can therefore be 
written as 

In ( K / K , )  

Kc = K 0 0  w ' f s 0  

for K < K,  

(12) for K 1 K, 
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The two basic parameters SO and K~ which enter eq 12 can 
be evaluated analytically. The slope SO is calculated by 
taking the derivative of eq 3 with respect to K and making 
use of eqs 5-7. We obtain the result 
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Figure 1. Schematic doubly logarithmic plot of the stability 
ratio W for colloidal doublet formation as a function of dimen- 
sionless inverse Debye length aK (a being the particle radius). 
Thin line A is the exact stability ratio. Note that in the definition 
of W we used V(h) = 0 for the reference interaction. Since the 
van der Waals attraction is the actual interaction driving fast 
coagulation, In W reaches a negative limiting value at high salt 
concentrations. Line B is the present analytical approximation 
and is given by K~ which determines the critical coagulation 
concentration and its slope SO. 

[6Uo + XtUP] [ Uo + X&,(dU’/dK) J 
(13) 

By use of eqs 12 and 9 in eq 11 the critical coagulation 
condition can be shown to be 

2 ) (14) 

Equations 6,7,12,13, and 14 represent the central results 
of this note. 

To illustrate the applicability of the general results, let 
use first consider the potential 

U(X,K) = Ce” (15) 
where C a a tanh2(/3@.d4). This interaction potential has 
been used in the study by Reerink and Overbeek.‘ The 
solution of eqs 6 and 7 yields xo = 1 and KO = 12C/(eaA). 
Using these results and dU/& = 0 in eqs 9,13, and 14, we 
obtain WO = [ ~ e ~ A Y ( 2 8 8 / 3 C ~ ) l ~ / ~ .  The slope turns out to 
be 

so = @C/e - 1/2 = 0.378C - 0.50 (16) 
whereas the critical coagulation concentration is deter- 
mined by 

2(2U0 - X,2U/)2 

4a2Kt(fluo - X,2fluo”/2) -1/(2so) ( T X O  
KC = KO 

Note that by virtue of ~ K O  >> 1, the electrostatic coupling 
constant C must be assumed to be much larger than the 
Hamaker constant A. Reerink and Overbeek‘ have 
obtained for the slope SO = flC/e, which is the leading term 
of eq 16. These analytical results agree well with numerical 
calculations (see Figure 2, graph A). 

As a second example consider the Derjaguin approxi- 
mation of the interaction potential obtained by solving 
the linearized Poisson-Boltzmann equation with constant 
potential boundary conditions’ 

U(X,K) = C h ( 1  + e”) (18) 
An analogous calculation yields the where C 0: 

IO 

3 5  
c - 

0 

~~ 

3.8 4.0 4.2 4.4 4.6 4.8 

In an 
Figure 2. Comparison of exact stability ratios (thin lines) with 
the present analytical approximation (thick lines) for different 
interaction potentials: exponential potential eq 15 (A), constant 
electrostatic potential interaction eq 18 (B), and constant charge 
interaction eq 21 (C). In al l  three cases BA = 5 and BC = 100. 
The barrier height at the critical concentration has the value BV, 
H 6. 

following slope and critical coagulation condition 
so * 0.288C - 0.26 (19) 

A comparison with the exact result is shown in Figure 2 
(graph B). The linear approximation intersects the exact 
stability curve at In W = 2. The exact stability ratio has 
an inflection point at ln W = 5. 
As the fiial example let us focus on the case of constant 

charge boundary condition1 

(21) 

(22) 

U(X,K) = -C ln(1 -e-’) 
where C a aZ2. The results are 

SO E 0.69/3C - 1.51 

K, = 5.77-( C -) 0.053A2 ‘/(%O) (for C >> A) (23) 
aA /3cs 

For this functional form of the interaction potential, the 
slope of our approximation (12) agrees well with the exact 
calculation (Figure 2, graph C). The critical coagulation 
condition, however, is slightly underestimated and the 
linear approximation is shifted from the exact stability 
plot toward smaller values of In K. It is interesting to note 
that this effect goes along with the lack of an inflection 
point in the exact stability plot. 
An analogous treatment can be applied to the situation 

of reaction limited particle deposition in a flow field past 
spherical collectors.s Upon increasing ionic strength, a 
crossover from slow to fast deposition is observed which 
follows the same pattern as diffusive doublet aggregation.6 
According to the analysis of Spielman and Friedlander 
the inverse collision efficiency Wan, which is defiied as 
the ratio of fast and slow deposition rate constanb, is given 
b99’ 

w“ N 0.6246( %)l’sK(f(h)ebv(h) - 1) dh (24) 
DAPC 

where D is the particle’s diffusion coefficient, u the velocity 
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diffusive doublet aggregation. On the other hand, the value 
for the critical deposition condition K J ~ )  can be either 
smaller or larger than the critical coagulation condition K,, 
depending on the relative size of ala, and the Peclet 
number Pe = uaJD. 

In summary we have presented an analytical approx- 
imation for the stability ratios for diffusive doublet 
aggregation and deposition of colloidal particles for 
arbitrary electrostatic interaction potentials. For inter- 
particle separations and Debye screening lengths small 
compared tothe particle radius, we give explicit expreeeions 
for the critical coagulation conditions and slope in the 
stability plot. These are precisely the same quantities as 
determined in the experiment. Note that our prediction 
for the critical coagulation concentration is smaller than 
the textbook result obtained from the condition of 
vanishing barrier height. In our case the height of the 
potential barrier at the critical coagulation concentration 
is of the order of several thermal energy units. By use of 
interaction potentials which include size, charge, and 
structural polydispersity, the present approach might be 
useful in elucidating the long standing problem that 
experimental stability ratios are, in contrast to available 
theories, insensitive to particle size. 

of the particle toward the collector of radius a,, A, a 
porosity-dependent dimensionless parameter,cS and f(h) 
accounts for the hydrodynamic screening between particle 
and collector. This latter function can be approximated7 
byf(h) = 1 + alh. With thesteepest deecentapprosimation 
applied to eq 24, the deposition stability ratio takes the 
form of eq 12 if we make the following substitutions 

W+ Wd) (25) 

where Woisgivenbyeq9andB = 1.2491[a3ul(a,2A~)11~S. 
The parameters xo and KO are again determined by the 
solution of eqs 6 and 7. 

We can illustrate these general results with the potential 
given by eq 15. The slope is 

s i d )  = so = @C/e - 112 (28) 
The critical deposition concentration is determined by 

129) 

These equations should be compared with eqs 16 and 17 
for the case of diffusive doublet aggregation. Note that 
for the exponential form of the electrostatic interaction 
potential, eq 15, the slope SO(@ has the same value as for 

(7) Dahneke, B. J. Colloid Interface Sci. 1974,48, 620. 
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