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1. Introduction

In this lecture, an attempt is made to review parts of the development of optical
multiple scattering during the past decade [1-5]. Emphasis will be on experi-
mental observations and on a discussion of the underlying physics in simple terms.
Multiple light scattering is not only of interest because of fundamental issues such
as localization of classical waves, but also since many direct applications of the
discussed principles emerge. In fact, almost all visible objects in nature multiply
scatter light: white paints, milk, snow or clouds are examples with negligible ab-
sorption, whereas colored objects like leaves, wood or stones have rather strong
absorption bands somewhere in the visible. Many features of multiple light scat-
tering can be transposed to other classical waves such as (ultra)sound, heat or
microwaves diffusing through random media. This has various practical implic-
ations, for example in material testing and remote sensing. Analogies and differ-
ences of light and electron transport are briefly summarized in section 4. One of
the beauties of the optical case is that many things — like all features of single
scattering or the transport mean free path of light — can be calculated in general.

1.1. Single scattering

The following introduction to single light scattering for dielectric particles with
radius R smaller (Rayleigh scatterers) and larger (Mie scatterers) than the optical
wavelength \ originates from two classical books [6,7].

1.1.1. Rayleigh scattering, (R < A):

Light with electric field amplitude F, linearly polarized along @ incident along =
generates an induced dipole moment inside the particle, which in turn radiates off
an electromagnetic dipole field. With 1 being the angle between the scattering
direction 7 and x, the scattered intensity is

RS (mQ -1
At m2 42
7 is the distance from the scatterer and m = n, /n; the ratio of the refractive index
of the particle (index 1) and the surrounding medium (index 2). For spheres, m

relates to the polarizability o by & = (m? — 1) /(m? + 2)R®. Because I, & A™*,
clear sky appears blue. Note that the scattered intensity increases with the square

I, =167t

Y2E? sin® .
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152 G. Maret

of the volume V' of the particles. Defining the scattering angle €, between z
and r one immediately finds the donut shaped angular intensity distribution of
I, for unpolarized incident light I, o (1 + cos®#,)/2 and a degree of polar-
ization P = (1 — cos®6,)/(1 + cos? 6,). The scattering matrix S, connecting
the horizontally and vertically polarized scattered fields with the horizontally and
vertically polarized incident fields has the diagonal form

32(85) 53 13 COSB_., 0
( Si S =ik 0 1

Angular integration of I, gives the total scattering cross section
241rr3\/'2(m2 - 1)2

M 'm2 42
and division by the geometric cross section mR? the “efficiency factor” Q) as a
function of the size parameter © = kR.

8 ,mi-1
Qu(2) = 37 (m2+2

C, =

)? (1.1)

1.1.2. Rayleigh-Debye-Gans scattering (kR|lm — 1| < 1):

This simple scheme can be generalized to larger particles, which are considered as
an ensemble of small volume elements acting like Rayleigh scatterers. The total
scattered field is expressed as the coherent sum of the fields from the volume
elements located at r;. As long as the incident plane wave front is not distor-
ted by the presence of the other volume elements (x|m — 1| < 1) the phase
factors between two volume elements are simply e~ *9{™~7i) with the scat-
tering vector g, = 2ksin(f,/2). The scattered intensity therefore becomes
I, = K'V?/(47%r?)|m — 1|F(#) which is angular dependent because of the
angular dependence of the form factor F\(8,) = V2| [ e~ """ dV|?. For a
homogeneous sphere, for example, one obtains

_ [3(sing; R — g;Rcosq,R) 2

F(8;)

(qsR)?
and
5 sin 4x 7
2| 3 +22° - —512 L. T 2(1 — cosdz)+
Qs =(m-1) , & z , (1.2)
+(%3 = 2)(7y + log 42 — Ci(4x))

-~ being Euler’s constant and C'i the cosine integral. For increasing x (0 deviates
from the one for Rayleigh scattering and becomes, forz > 1, @, = 2(m—1)%z.
Evidently, in the Rayleigh Gans regime, scattering is always weak (@, < 1),
whatever the particle size. Strongly light scattering samples of reasonable size
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can therefore only be achieved by using particles with refractive index mismatch
m > 1.5.

1.1.3. Mie scattering (any kR, any m):

The general theory of scattering of light from homogeneous dielectric spheres 1s
due to Mie and Debye. Based on this work, a vast literature has developed treat-
ing particles of various shapes, inhomogeneous particles and absorption. Fully
analytical solutions exist only for certain limiting cases, and the derivation of
Q. 1s sketched here only for the simplest case of a homogeneous sphere without
absorption.

The general problem is to solve the electromagnetic wave equations for the
incident wave, the wave inside the particle and the scattered wave, the dif-
ferent components of the electric and magnetic fields of the light being con-
nected through the boundary conditions at the surface of the sphere. By in-
troducing the electric and magnetic Hertz potentials IT;, II; in the usual way,
the problem reduces to solving the scalar wave equations VII + k%I = 0
for II; and Il;. The II's can be expressed as II = R(BS}P;[,,m)(COS 0,)®(¢),
where R(6.), p™ (cos 6,) and ®(¢) are Ricatti—Bessel, associated Legendre and
sin, cos functions, respectively. Writing the general solutions for the incident,

n

internal and scattered wave as series expansions Il = 07 /3™ (¢4, +

dnx,z)Pim')(am- €08 P +byn Sin ¢,,¢ ) and using the boundary conditions at the
surface of the sphere, one obtains expressions for the Mie coetficients a,,, by, ¢,
and d,,, which only depend on the Ricatti-Bessel functions v, 47, Xn. X, of or-
der n. This gives the far field scattered amplitudes .S, and S; and the correspond-
ing intensities as a series in n. Like in Rayleigh-Gans scattering, the scattered
intensity decreases with increasing scattering angle €. and becomes very small
for = > 1. Particles larger than a wavelength scatter mostly forward. With in-
creasing refractive index mismatch between sphere and outer medium, the zeros
of the Rayleigh-Gans form factor F(f,) become more and more filled up with
scattered intensity, since the wave fronts inside the sphere are more and more dis-
torted as compared to free space, which prevents the destructive interference of
all scattered waves at particular angles. Finally, the efficiency factor is
2 _ 2T = 2 2
Qi =Cu/nR* = — > (2n+1) [a] + b2] (1.3)
n=1
For anisotropic scatterers, it will be useful to introduce the transport cross sec-
tion C; (or radiation pressure cross section), which differs from the scattering
cross section C; by the amount of scattered intensity which does not change dir-
ection on scattering. C; = C,(1 — (cosf,)p, ). Here (---}g. denotes angular
integration over the form factor F(0,).
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1.2. Random walks and classical diffusion

Let us now consider scattering from more than one particle. We first discuss an
ideal gas of non-interacting scatterers at a small particle density p such that the
average inter-particle distances are much larger than A. For the moment we do
not worry about interference effects between scatterers, although they are very
important. Due to the presence of many scatterers, more and more of the incident
light beam is scattered as it proceeds through the cloud of particles, the incident
intensity decays exponentially on the length scale [, = 1/C,p. If the medium
has a size L > [, there is essentially no directly transmitted beam, virtually all
transmitted light is multiply scattered: one can not see an object hidden behind
the medium, since the directly transmitted beam is too weak compared to the
scattered light. Using C, one can define another length scale, the transport mean
free path [, = 1/C,p which is the length over which the incident intensity spreads
into all directions (loss of memory of the direction of k). [; and [, are identical for
completely isotropic scattering, but may differ by more than an order of magnitude
for Mie scatterers. For L > [, light propagates diffusively on scales > [, and
except for a surface layer of thickness of order [, the flux of light intensity is
essentially isotropic: Deep inside a thick cloud, it is impossible to figure out the
direction of the sun. There are various ways to describe this type of light transport,
but as most of them are analogous to those of electron transport widely discussed
in this school, I adopt the simple and very physical point of view of random walk
of photons or diffusion of light intensities. This does not include polarization
effects, but provides a good semi-quantitative account for many experiments. A
general overview on light transport and radiative transfer 1s given in [8] and [9].
Let P(r,7’,t) be the probability that a photon is scattered from r to 7" within
a time t. P(r,r',t) can also be considered as the diffusing light intensity and
obeys the diffusion equation

0 A

(DV? + 5P v, t) = 6(r — r')6(t). (1.4)
D = ely /3 is the diffusion constant and c the speed of light. The solution for an
infinite medium (with P=0atp' = |[r —r'| = o0) is

fan 1 —e

P(r,v',t) = (47rDt)3f2€ 2 (1.5)
Converting from time to space by Dt = [;s/3, s = ct being the contour length of
the diffusion path, P(p', s) is the probability of a random walker to be at a linear
distance p' after a walk of length s. P(p',s) is easily calculated for different
bounded scattering media using the method of images. The key of this is that
paths which cross the interface once between inside and outside the medium never
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return, since the corresponding walker escapes. This mimics an absorbing wall
at the interface. All paths from a starting point r (inside) to the mirror image r'’
(outside) of the ending point »' (inside) cross the interface once. Thus for a semi-
infinite half-space P = P{(p',s) — P(p", s). As an example, locating r and " at
a distance [, from the interface, one obtains P using eq. (1.5) and by integration
over p' the total path length distribution for reflection from a semi-infinite medium

4ri2

P(s) = W

(1.6)
In the case of transmission through an infinite multiple scattering slab of thickness
L > [;, an infinite series of multiple images has to be considered due to the
presence of the two parallel mirror planes. One obtains

9 2 n?m?sl, . mwl, . nw(L -1
P(s) = I Zexp(— 32 t)sm Lf sin ( T t). (1.7)
n=1

P(s) is the central function required for the calculation of various experimentally
accessible quantities discussed below. It reflects the geometry of the scattering
medium: In reflection, short paths of a few [; are more probable than long paths,
but the decay (s~*/2) is slow, whereas in transmission both very short and very
long paths have exponentially small probability and the most probable path length
is of order L?/l;. P(s) can be directly determined from the temporal broadening
of a short (psec) incident laser light pulse.

The above discussion makes clear why the intensity scattered from a white
object is essentially independent of the angle of observation both in reflection and
transmission: Memory of direction is lost on the random walk step length [, and
basically all paths start and end within {; from the interface. Integration of eq. 1.6
and eq. 1.7 over s gives the total reflectivity R — 1 and the total transmission
T — li/L for L/l; — oo. Absorption is easily incorporated as an exponential
attenuation e~%/% along the contour s, [, being the absorption length.

1.3. Classical wave interferences, speckles

In fact, when laser light is scattered from a white wall or a sheet of paper the
scattered intensity is not at all independent of the angle of observation but strongly
fluctuates on a angular scale of typically 1072 to 10~%rad. This granular scat-
tering pattern, in optics known as speckle, is characterized by a high degree of
randomness: Angular correlations only extend over the size of individual spots
and the intensity varies widely from spot to spot. Closer analysis reveals that the
intensity distribution function is an exponential p(I) = e~//{!) and the angular
correlation function decays with a Gaussian of width A /W, where W is the beam
waist [10].
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Both of these features are characteristic for an interference pattern of a large
number of scattered fields with random phases (Gaussian distribution of fields)
[10]. In mu™iple light scattering, the mutual phase shifts between fields scattered
along different paths are generally much larger than A because of the broad dis-
tribution P(s) of path lengths s. As the coherence length of laser light (typically
0.01 to 100m) is much longer than most path length differences, the fields add
coherently at the detector. The radiating surface zone of the sample can be con-
sidered as a planar source of linear dimension W of many random fields and the
scattered far field pattern is just the 2D Fourier transform of this zone. From this
point of view, the speckle pattern does not tell us much about the sample except
that the latter generates random fields, but it really is a complicated interferomet-
ric fingerprint of the positions of the scatterers. So, interferences are important in
multiple scattering of laser light, and the reason why the description of section 1.2
was nevertheless successful for about a century [11] is that coherence lengths of
natural and artificial light other than laser light are much shorter than typical dif-
fusion paths. The above picture obviously also holds for laser light when speckle
patterns are averaged, for instance by motion of the scatterers or changes of A.
In other words, interferences between fields scattered along different paths do not
contribute to the scattered intensity when proper ensemble averaging i1s made.
The latter condition requires no correlations of the fields scattered along the dif-
ferent paths, an assumption usually very well satisfied, but which is in fact not
completely correct (see section 2.5).

We have seen in section 1.1, that a single light scattering event modifies the
polarization state. Therefore, the polarization state of the incident light changes
in the process of multiple scattering in a complicated way determined by the geo-
metry of the paths. Hence, for a thick sample (I; < L), the transmitted light
is completely depolarized. More precisely, in the case of uncorrelated paths, the
individual speckle spots have well defined but mutually uncorrelated polariza-
tion states [12]. Multiple scattering speckle patterns consist of two orthogonally
polarized uncorrelated gaussian speckle patterns.

2. Coherent backscattering and localization
2.1. Weak localization and enhanced backscattering

This section discusses the fact (first realized in solid state physics more than 30
years ago) that one constructive interference survives the above ensemble aver-
aging over different representations of disorder. Let us consider first purely elastic
scattering, i.e. no motion of scatterers. In this case, as evident from fig. la, all
phase shifts the light wave accumulates along a given scattering path (between
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Fig. 1. The origin of coherent backscattering is constructive interference between reversed multiple
scattering paths

first and n" scattering event) exactly equal the phase shifts along the same path
passed in the opposite direction (v to 1). Therefore, for a plane wave such as
an expanded laser beam incident on a thick multiple scattering slab, these two
waves constructively interfere in the backscattering direction. It is important to
realize that this constructive interference occurs for all pairs of “reversed” paths
whatever their conformation and whatever the distance between first and last scat-
terer. Therefore, in contrast to the speckle interferences, it survives averaging over
different sets of positions of the scatterers. The minimum number of scattering
events in a path required for this effect to occur 1s n = 2. If single backscatter-
ing has negligible contribution to the total intensity reflected from the sample, all
reflected light contributes to this interference. As two waves interfere construct-
ively, the intensity is enhanced by a factor 2 right in backscattering. Because of
the total coherence between the “reversed” paths, this effect is usually called “co-
herent” backscattering, despite of the fact that light from different paths is com-
pletely incoherent. Obviously, for a given position of first and last scatterer of a
path, higher order constructive and destructive interferences occur at angles off
backscattering (fig. 1b). However, these angles depend on the distance between
first and last scatterer and because of the broad distribution of distances all higher
order interference effects average out. Constructive interference therefore only
exists in a narrow range of angles around backscattering, in fact for angles smal-
ler than the angle corresponding to the shortest typical distance between path
ends. The shortest paths (on average) correspond to double scattering and, con-
sequently, the shortest typical distance is of order [;. It follows that the typical
width of the cone is of order A /[, [13].

Although the fundamental mechanism of coherent backscattering of electro-
magnetic waves was discussed already in 1969 [14,15], its clear experimental
observation was only made in 1984-85 [16-18]. These first experiments were
performed by illuminating concentrated aqueous suspensions of sub-micron size
colloidal latex particles at about 10% volume fraction with visible laser light and
monitoring the backscattered intensity through a semi-transparent beam splitter.
The angular width of the cone was about (0.1° in those samples and varied linearly
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Fig. 2. (a) Coherent backscattering cones of various samples. (b) Comparison of theories of the
angular shape of the cone with data (continuous line) on pressed powder of BaSO4 p-crystals.

with the concentration of scatterers (I, o p~!), whereas its height was constant,
as expected*. Because of instrumental improvements (e.g. linear and 2D detector
arrays) it rapidly became clear, that cones can be seen from most turbid media
even in cases of strong absorption. A few examples are shown in fig. 2a.

In these samples the excess intensity scattered into the cone is small (of order
(M\/1:)?/27) compared to the diffusely reflected “incoherent” light. As a con-
sequence, the total transmission through a finite thickness sample is slightly de-
creased, by 1 — (\/1;)?, below the classical transmission l; /L in the absence of
coherent backscattering, since the sum of reflected and transmitted photon Aux
must be conserved*. This is very analogous to weak Anderson localization of
electrons and, therefore, the coherent backscattering effect of light is sometimes
called “weak localization” of light.

2.1.1. Angular dependence

Fig. 2a clearly reveals the peculiar shape of the backscattering cone which has a
triangular tip and a slow angular decay at the wings. There are various ways to
account theoretically for this shape (see e.g. [19-22], but all approaches discussed
so far are approximate for typical samples studied: The high volume fractions of
scatterers imply significant positional correlations, their large size requires Mie-
scattering, which does not properly account for the sometimes irregular shape,
and the fact that large parts of the backscattered light has only experienced a
few scattering events implies failure of the diffusion approximation. Neverthe-
less, the cross features of the cone, i.e. width and shape, agree surprisingly well
with a simple semi-empirical theory [19], which has, in addition, the benefit of

* But smaller than two for various instrumental reasons as discussed below.
* In non-absorbing media.
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being particularly transparent physically. It assumes scalar waves (no polariza-
tion), isotropic (Rayleigh) scattering ([, = [;) and the diffusion approximation
to hold even close to the surface of the sample. Because all internal phase shifts
along the reversed scattering paths are equal, the contribution of a path start-
ing at 7 and ending at 7’ to the coherent intensity is simply given by the phase
factor cos(g(r — r')), g = k; + k, being the scattering wave-vector with re-
spect to backscattering. k; and k, denote the wave-vector of the incident and
out-going detected light, respectively, and near backscattering |g| = 276 with
@ being the scattering angle with respect to backscattering. To obtain the total
angular dependence of the cone, we have to evaluate the sum over these phase
factors, weighted by how much light entering at r leaves at r’. This weight is
given by P = P(p',s) — P(p",s) above (see also [23]). In other words, the
angular dependence i(g) of the cone is just the Fourier transform of P. Let us
further simplify the problem and assume that all scattering paths start and end at a
distance [, from the interface inside the sample. Then, for random paths of length
s, P(p', s) is a Gaussian of width (p*} = 4l;5/3 and, the Fourier transform of
this Gaussian being a Gaussian in g, i(¢) can be written as a sum over s

f P(s}ef"z'!""‘!3 ds
ilg) = s : @0
P(s)ds

L

With P(s) for a semi-infinite slab from eq. (1.6) we obtain

; -3 1 q%*? ™ |
= —— gl (2T +T(-=,0,=L)) =1 — /—gly + =¢*2 + - --
i(q) 5 T?q:( Vv + T 5073 ) gl + 307l +

(2.2)

This simple theory accounts for both the triangular §-dependence of the cone near
backscattering (gl;, < 1) and the scaling of its width with ¢/, since contributions
of long scattering paths, well described by the diffusion approximation, dominate
the angular dependence at small gl;. However, with increasing ¢l;, eq. (2.2) be-
comes less reliable because of the increasing contributions of short paths. Their
weight is not correctly described by eq. (1.6) which originates (like eq. (2.1) itself)
from the diffusion picture. In addition, the diffusion approximation breaks down
near the boundary of the slab, or provides an unphysical boundary condition with
non-vanishing diffusive photon flux within a layer of about [, thickness outside
the sample [8]. Finally, the conversion of the incident propagating light beam
into diffusive flux does not simply occur at a single distance [, inside the sample.
Fig. 2b shows — for comparison with eq. 2.2 - two slightly different expressions
by Akkermans et al. [19,20] obtained by using the condition of vanishing diffus-
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ive flux a distance y/; outside the sample and v = 0.7. They are, respectively, for
start and end points of diffusion paths at a fixed distance [, inside the sample

1 — e~ 2(1+7)ale
2(1 + v)ql;

and for an exponential distribution of the latter

i(q) = =1-(1+~)gl,+--- (2.3)

1 1 — e—2vale

= 2.4(1+q!f)2(1+ a0 ) (2.4)
Ovzrin [22] has given recently an expression for scalar waves and anisotropic scat-
terers based on the exact solution of the radiation transfer equation [8,9]. These
and other expressions all reproduce the linear 0-dependence at small . However,
they provide somewhat different initial slopes and substantially differ at large
6 because of the different description of the low order multiple scattering. For
typical samples such as aqueous suspensions of colloidal particles or the BaSO4
powder of fig. 2, eq. 2.4 [19] agrees surprisingly well with the data up to ¢, ~ 1,
experimental y-values being between 0.6 and 0.7 [19,24-28]. The influence of
internal reflections on the cone shape 1s discussed in section 2.1.3.

i(q)

2.1.2. Absorption and finite sample size
The description of i(q) in terms of contributions of different path lengths allows
very easily to include the effects of absorption [24,29] and finite geometry of the
sample [29,30]; they only affect the form of P(s) to be used in eq. 2.1. Absorp-
tion attenuates the intensity scattered along paths of length s according to e ~8lta,
Both integrands in numerator and denominator of eq. 2.1 are affected by this at-
tenuation factor in the same way and hence the enhancement factor at ¢ = 0
remains unchanged (i(0) = 1). In other words, the incoherent scattered intens-
ity, i.e. the background seen outside the cone, is lowered by exactly the same
amount than the coherent intensity at ¢ = 0. The angular shape of i(g), however,
becomes absorption dependent, since long paths contributing essentially to small
angles are attenuated more than short paths. The numerator of eq. 2.1 retains the
same functional form, if g1, /3 is replaced by (g*l; /3+1/1,). For large 8, i(q) is
unchanged, but the tip of the cone is rounded off below an absorption dependent
cut-off angle given by g, = 1/3/lal;. We immediately see that the decrease of
the incoherent background (denominator in eq. 2.1) decays as a function of g, in
exactly the same way as i(g) as a function of ¢ for no absorption (g, = 0). Both
the absorption induced rounding of the tip and the analogy between i(q,0) and
i(0, q.) have been quantitatively verified [24].

The effects of finite sample size is also described by a modified P(s). For a
very extended slab of thickness L, the intensity in paths of length s = L1,
becomes exponentially small, since the light scattered along very long paths is
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lossed by escape on the transmission side. Inspection of eq. 1.7 shows that P(s) is
essentially damped by exp[—(7?l, /3L?)s| and hence the corresponding reduced
cut-off angle of the backscattering cone is g; == w/L. This has also been verified
experimentally [29,30].

2.1.3. Internal reflections

In an experiment, light crosses the interface between the scattering medium and
its surroundings (air, container, optical fiber, ...) on the way in and out. Since
the scattering medium and its surroundings generally have different average re-
fractive indices a finite fraction of the diffusing light hitting the sample interface
from the inside is reflected back into the medium. This effect can be described by
a correction of P(s). The diffusing light re-injected into the sample after internal
reflection adds path length to all paths. Therefore the cone width is expected to de-
crease. A first description of internal reflections assuming an angular-independent
average reflectivity R was made [31,32] within the frame of the diffusion approx-
imation. Both models predict a substantial narrowing of the cone with increasing
R. The work of Zhu et al. [33], which is corroborated by their experiments on
speckle correlation functions, suggests that the major effect of internal reflections
is a correction of v by an additive factor 2(1 + R)/3(1 — R). In the limit of
small and large index mismatch, this result is in good agreement with a recent
theory based on radiation transfer [34] for point-like scatterers and scalar waves.
The influence of glass windows in front of the multiple scattering sample on the
angular shape of cones was studied [35) both experimentally and by numerical
simulations. The internal reflection from the glass—air interface which is stronger
than the reflection from the sample-glass interface gives rise to a discontinuity of
the cone slope at a characteristic scattering angle related to the thickness of the
window. This work and simulations [36] reveal that diffusion theories are actually
very accurate for sufficiently thick samples.

2.1.4. Enhancement factor

In the early measurements of the coherent backscattering cones on colloidal sus-
pensions [16—18] the observed tip height was between 10% and 60% above the
incoherent background intensity rather than the expected 100% corresponding
to an enhancement factor of 2. Further experimental work has revealed various
reasons for this: light scattered from optical components, single scattering and
multiply scattered light from outside the illuminated sample area all increase the
incoherent background, but do not contribute to the cone, therefore decreasing the
enhancement factor. The latter effect becomes particularly pronounced for wide
angle internally reflected light [35]. Limited angular resolution is a problem for
narrow cones (typically < 0.017). Recently, in a very careful experiment, Wi-
ersma et al. 28] have shown an enhancement factor of 2.00 £ 0.01 in samples
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with kol, 3> 1 and have argued that recurrent multiple scattering events* which
become more probable for kyl; — 1 could be responsible for the observed lower-
ing of the enhancement for small kyl;.

2.2. Weak positional correlations of scatterers

Our description of multiple light scattering was restricted so far to low volume
fractions of scatterers, where their positions are essentially uncorrelated and the
scattered light waves recover plane wave behavior between successive scatter-
ing events (kol; > 1). This picture necessarily breaks down at high volume
fractions and high scattering strengths of the particles and the density depend-
ence of [, and [, must deviate from the p~' law characterizing the “dilute” (weak
multiple scattering) regime. Imagine, for example, cube-like scatterers progress-
ively filling up space until reaching dense regular packing. In this-limit of an
optically homogeneous sample, multiple scattering would disappear and [, tend
to oc. There is a simple way to include the effects of interparticle correlations
for large kol, [24,37,38,25,39]: Since the single scattering intensity from correl-
ated spherical particles in the far field is given by the product of the form factor
F(g.) and the structure factor S(g,), which depends on the inter-particle inter-
action potential, we can consider the multiple scattering as a series of scattering
events from groups of correlated particles with angular dependence F'(q.)S(qs),
as long as the range of positional correlations is small compared to l.. Re-
call from section 1.1.3 that for negligible correlations [; and [, are related by
I, = l;/(1 — (cosb,)p(,)). Correlations then require angular average over
F(g:)S(gs) and, thus, l; = /(1 — (c0s85) p(q.)5(q.))- Since (1 — cos ) o ¢}
the relative correction of ; due to correlations is

2nkg
/ a2 F(qs)S(qs)qs das
= (2.5)

f; 2nky
/ a2 F(qs)gs dgs
0

This correction, using the Percus—Yevick structure factor S(g;) for hard spheres,
quantitatively describes the volume fraction (vf.) dependence of [, in aqueous
suspensions of colloidal latex spheres up to almost 50% [25,39]. The deviation
from the p~!-dependence becomes significant above about 15% vf. and [, /l} =~
0.5 at 45% vf. in this system. It may become much larger for high index particles
such as TiO, as illustrated in fig. 3.

Kaplan et al. [40] have extended the description of interparticle correlations to
binary mixtures of hard spheres of two different sizes where three partial structure

* For example closed paths with identical first and last scatterer.
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Fig. 3. Estimation, using eq. 2.5, of the effect of interparticle correlations on [, for colloidal TiOs
particles at A = 0.514 pm. {; (— no correlations) and I} (- - - - correlations). (a) Size dependence
of Iy and 1}. (b) I} /I; vs. volume fraction at different index mismatch m.

factors come in. Here again, good agreement with [j-measurements on aqueous
suspensions of latex particles was found over the investigated range of particle
diameters and mixing fractions.

2.3. Polarization

The scattering matrix in section 1.1 shows that the polarization state of the light is
generally changed on scattering, both for Rayleigh and Mie-particles. For spheres,
the change depends only on the incident polarization state and on the direction of
the outgoing wave vector, In our description of light propagating along random
multiple scattering paths, we are interested in the evolution of the polarization
state along a path, the state being defined with respect to the local direction of
propagation. This evolution is completely determined by the configuration of
the path and is obtained, in principle, by multiplication of the successive scatter-
ing matrices expressed in the local coordinate frame. However, because of the
complexity of this in the case of high order Mie scattering, a discussion appears
impossible within the constraints of this course (see e.g. [41,20,12,42]). Rather,
a few statements are made and illustrated by examples.

Inspection of a cloud through a polarizer sheet shows that high order multiple
scattering completely “depolarizes”, the memory of the incident polarization state
is lossed. The sun light multiply scattered through a cloud contains in fact a
mixture of all polarization states. This is in contrast to coherent light* where
each speckle spot has a well defined, but different polarization state because of

* With coherence length longer than the characteristic path length.
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the coherent superposition of the fields scattered along different paths in a given
direction [12]. In both cases, the randomization of the incident polarization state
occurs on a characteristic length scale which is typically, but not necessarily, of
the order of I, (decay length of ko). Imagine for instance a two-dimensional
disordered array of scatterers. In this case light with linear polarization normal
to the layer and diffusive propagation in the plane will not depolarize even over
macroscopic distances. Single backscattering preserves linear polarization, but
flips the helicity of circular polarization. Thus, the characteristic decay length
for polarization depends on the incident polarization state itself and, in addition,
on parameters of the scatterers such as their size which determines the relative
amount of forward to backward scattering. Once the light has penetrated the
(3D) multiple scattering medium by many polarization decay lengths the random
polarization states are widely distributed and a mean polarization decay length
may be defined by averaging over the distribution of the polarization states, which
is given by a homogeneous density of polarization states on the Poincaré sphere
[42].

The coherent backscattering cone has been studied for various polarization
states of incident and detected light, respectively [18,41,21,30,20,24] It has been
shown [20] that for spherical Rayleigh, Rayleigh-Gans and Mie scatterers full
coherence between the reversed paths prevails for parallel linear polarized incid-
ent and detected light. Therefore an enhancement factor of two and a cone shape
very similar to the scalar wave prediction is expected, in agreement with experi-
ment. The small and broad cones observed for perpendicular linear polarizations
of incident and detected beam, respectively, are non-universal and related to the
partial coherence of particular low order scattering paths. The use of identical
circular polarizers for incident and detected beam provides not only an enhance-
ment factor of two, in principle, but is also a convenient experimental tool to
suppress single backscattering, which flips the helicity [29]. This is most useful
for Rayleigh particles which have higher direct backscattering cross sections than
Mie particles.

2.4. Magneto-optical Faraday effect

As already recognized by Faraday and shown experimentally by Rayleigh [43]
the magneto-optical Faraday effect, i.e. the magnetic field (B) induced rotation
a = V Bs of linear polarized light propagating along s, changes sign on re-
versal of s. Hence, the Faraday effect acts like an optical diode® and should
therefore destroy coherent backscattering [44.45]. The first theories [44,45] of
this effect assume, that the Faraday rotation increases proportional to the dis-

* This property is often used in optical “insulators”.
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tance between scattering events but is randomized at each scattering by a ran-
dom helicity flip. In fact, the (Faraday) rotation is not randomized at all on each
scattering event, but transformed in a deterministic, k-dependent way because
of the completely deterministic transformation of the polarization on scattering
(see section 2.3) [46]. For random paths in 3D, one might expect that it accu-
mulates along the scattering path over a distance (/;) comparable with, but not
necessarily equal to the average polarization decay length [27] which in turn may
differ from ;. In this simple picture, which is a random walk of the Faraday
rotation v with step length {; on a random walk with step length [, the differ-
ence in Faraday rotation angle between reversed paths, per step [y, is of order
da = 2V Blycos©, © being the angle between B and the local direction of
propagation. The coherence factor between the time reversed paths for a given
step 1s cos da. For equidistant random steps, this gives a ©-averaged contribu-
tion of {cosda)e = u &~ e~ 2V B*1/3 1o i(q) per step. For an exponential step
length distribution, one obtains u, = arctan(2V Bl;)/2V Bl [27]. Under the
assumption of no correlations between the §a's of consecutive steps, one obtains
for paths of length s the average contribution e~*/*7""* Since the phase shifts
between reversed paths due to Faraday rotation are independent of phase shifts
due to variations of the external scattering angle &, we can write for i(q, B) in the
presence of a magnetic field

. 1 T S , a .
i(qg,B) = T0.0) / P(s]exp[—;h{qzl[ + 3l /1y Inu)| ds. (2.6)
I

Both terms in the exponent have the same s-dependence and theretore, the g-
dependence of the cone without Faraday rotation ¢(gl,, 0) and the B-dependence
of the tip i(0, \/3l; /1 In u) should be identical. The data in fig. 4b illustrate that
this prediction is in very good agreement with recent experiments [27]. The field
induced rounding of the cone at small angles is very analogous to the rounding due
to absorption discussed in section 2.1.2. However, as the incoherent wide angle
scattered intensity is not affected by Faraday rotation, the enhancement factor is
reduced now: The B field operates on the phase, not on the amplitude.

2.5. Long range speckle correlations

We have argued in section 1.3 that the fields scattered along different paths are un-
correlated. Then, all interferences between difterent paths average out both in the
average scattered intensity and in the intensity—intensity correlation function (C).
The latter is thus given by C(z) = (E(0)- E*(z))2/(E(0)?) — 1 where z stands
for some quantity introducing phase shifts between the scattering paths, such as
time for scatterers under motion, frequency shift of the incident laser light, angle
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Fig. 4. (a) Destruction of backscattering cones by magnetic fields. Sample; 0.03 pm diameter Si
particles at 5% vf. in a rare earth doped glass matrix. [y = 110 pm (b) Comparison of the angular
dependence of the zero field cone (cont. line) and the field dependence of the zero angle enhancement
factor (dots), when plotted in reduced units as suggested by eq. 2.6.

of incidence and detection, or magnetic field in magneto-optically active media.
E(z) denotes the total scattered field which is the coherent sum over the fields
E;(z) scattered along the different paths. In this so-called “factorization™ ap-
proximation, C(¢) only contains terms (E;(0)E; (z))(E;(0)E;(x)), and is again
written as a sum over P(s). This contribution to C is denoted .

Correlations between high order multiple scattering paths arise from paths
which cross at a certain scattering site [47,48]. This opens the possibility for
a non-vanishing contribution of (E;(0)E; (0))(E;(z)E;(z)) to C(zx). In other
words, on increasing  the fields E; and E; do not loose coherence at all between
source and crossing point or between crossing point and detector. This contribu-
tion C2(z) to C(x) decays thus more slowly than Cy () with increasing z, since
the crossing point may be located at any place inside the sample. In addition,
Cs(z) does not depend on the angle of incidence, nor on the angle of observa-
tion, respectively,

In the less probable case of two crossings of two multiple scattering paths,
even more correlations build up giving rise to an additional term Cs(z) in
C(z). C3(z) originates from terms (E;(0)E; (0))(E;(z)E; (z)) between source
and first crossing and after second crossing and detector. It decays even more
slowly with z than Ca(z) since the path segments between the crossings —
where (Cj-decorrelation occurs — are shorter on average than those between
one crossing and the interface (Cy). Most interestingly, (C5-correlations de-
pend neither on the direction of incidence nor of detection. Therefore they give
rise to fluctuations of the angular integrated transmission for diffuse illumina-
tion. Cs-fluctuations are independent of the sample size and may be considered
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as the optical analogue of the universal conductance fluctuations in electronic
systems.

Optical speckle fluctuations are dominated by C;-fluctuations because of the
very small crossing probability of paths in typical experiments on macroscopic
samples. As a consequence most experiments on speckle correlation functions
are well described by the “factorization” approximation. Examples are the angle—
angle correlations (or memory effect) [49,50], the frequency—frequency correla-
tions [51-53], the magnetic field-magnetic field correlations [54] and time—-time
correlations (see section 3.2). The only observation of optical C,-fluctuations so
far is due to de Boer et al. [52,53], who have found, in addition to a large -
signal, the expected small amplitude power law decay in frequency shift using
a tunable laser, strongly focussed on very small TiOg/air samples and collect-
ing the diffuse transmitted light by an integrating sphere which averages over
the transmission speckle spots. The corresponding probability distribution of the
total transmitted intensity is essentially a Gaussian about the average transmis-
sion, as expected, but a small deviation indicating contributions from higher order
corrrelations (3 crossing beams) was found [55]. It has not been possible so far
to detect the even smaller C3 term.

2.6. Nonlinear media

Very recently interest has developed in nonlinear properties of disordered media.
The shape of the coherent backscattering cone [56-58] and C'-correlations [59]
have been studied for the light generated at the second harmonic frequency in-
side media consisting of particles with nonlinear susceptibility. The generation of
frequency doubled light requires two photons to meet at a given scattering site,
and it appears natural to treat this case with the photon diffusion picture but now
putting the sources of diffusing 2w photons distributed within the sample. The
2w — C'-correlations are therefore long range like C'y-correlations in linear media
[59].

In addition, laser action has been studied in mixtures of colloidal suspensions
with laser dyes [60—62] and in powders of neodynium crystals [63]. The observed
features are essentially consistent with superradiant laser emission”, or amplified
spontaneous emission {(ASE), caused by scattering paths longer than the charac-
teristic length [, for positive gain. Strongly scattering media provide those long
paths even in samples with relatively small external dimensions. The ASE emis-
sion from such samples is non-directional and speckle-like. Like normal speckles,
it appears globally incoherent despite of its coherence within each speckle spot.
Coherent backscattering also exists for the ASE light [64,65] with an enhance-

* Without external cavity, because there is no!
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ment factor close to 2. As [, can be viewed as a negative absorption length, the
cone becomes narrower as opposed to the absorption induced broadening. In ana-
logy to absorption, the narrowing occurs for scattering angles smaller than /[, /[,
[65].

2.7. Attempis and difficulties to observe 3D localization of light

What happens, if the parameter A/[; becomes larger? An increasing width of the
backscattering cone implies a reduction of the transmitted intensity T" according to
= %(1 — (kolt)~?%) |66]. In this weak localization regime (A/l; < 1) the same
correction applies to the photon diffusion constant D, since T" = 3D /cL. On in-
crease of A/l; towards 1, the picture of photons diffusing along uncorrelated paths
becomes more and more unreliable. The diffusing intensity is reduced by coher-
ent backscattering, particularly for long paths, and the probability of crossings of
paths (section 2.5) increases. According to the scaling theory of localization [66]
the diffusion constant 1D becomes scale dependent and near A/[; = 1 (Joffe—Regel
criterion [67]) the optical transmission of a macroscopic sample should vanish.
John [68] has first pointed out that this peculiar state of light, diffusing without
being capable to escape across the sample boundaries, may exist for dense en-
sembles of dielectric particles. However, the efficiency of light scattering being
weak both at small and long wavelengths (see section 1.1), kol;-values of order
unity can only be reached in Mie-resonance of high index dielectric particles at
very elevated volume fractions. Since, in addition, absorption has to be kept small
(which presumably excludes the use ot metallic or semiconducting particles) the
range of parameters is very restricted and the undesirable effect of interparticle
correlations (ct. fig. 3) certainly large.

After the discovery of weak light localization, efforts were made to observe
the transition to strong light localization or, at least, to detect the anomalies in
light transport in the pretransitional regime. Watson et al. [69] measured D from
the broadening of a psec pulse transmitted through aqueous latex suspensions,
but A/l; was much too small. Using a similar technique, Drake and Genack [70]
reported very small D-values in dense samples of resonant TiO; particles, sug-
gesting the discovery of the anomalous regime near the localization transition.
However, combined measurements of IJ and [; by van Albada et al. [71] revealed
evidence for an aimost tenfold lowering of the velocity of transport of the light
energy on resonant scattering, while /; stayed reasonably large. The small energy
transport velocity is due to the finite dwell time in resonant scattering: scatterers
act as resonators of quality ¢ which need about @ cycles to be pumped by the
light pulse. A theoretical analysis [72] accounts for these observations. Thus,
there is no evidence for the onset of light localization in disordered media so far.
The difficulty in the highly dense systems is to evaluate experimentally the “clas-
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sical” value of {; and its modification due to interferences. The high field Faraday
effect may turn out very useful here, since it selectively destroys the constructive
interference between reversed paths.

3. Applications
3.1. Dynamic correlation function of the multiple scattering intensity

We now briefly discuss the effects of motion of the scatterers on the multiple scat-
tering speckle patterns [37,73,74,38,76,77]. It follows from the origin of speckles
(section 1.3) that the intensity of individual speckle spots fluctuates when particles
change their relative positions, since the phase shifts of the light scattered along the
different paths fluctuate. Within the factorization approximation the dynamic cor-
relation function of the intensity scattered in a given speckle spot, {((0)I(t)}, can
be simply obtained as an incoherent sum over the paths length distribution P(s).

() I(E))/U(0)?) — 1 = [{EO)E"(£))2/(T(0))*.
where
(E(O)E*(2)) = 1/(1(0)) / P(s)(E(0)E2 (1)).

E;(t) is the electric field scattered along a path (with index 1) and (- - -} denotes the
average over configurations of paths and over time i. All interferences between
different paths average to zero in the correlation function and hence we only need
to consider the time dependent phase shifts A® (t) between £;(0) and E; (t).
(EJ(0)EX (1)) = (e'2%(1)) = (e A%*(1)  The latter equality follows from the
Gaussian distribution of A® due to the random configurations of the paths. At
small correlation times ¢ we can write (=3 (1)) & ¢=(8%()  For uncorrel-
ated motion of the successive scatterers along a path the total variance of the
phase (A®?(t)) is related to the mean square phase per scattering event (6¢*) by
(A®%(t)) = n{d6¢?). n = s/l, denotes the number of scattering events along
paths of length s. We have thus reduced the expression for the dynamic field
correlation function C(¢) to the form

o o0
) = f P(s)efﬁ(ﬁ"'!) ds// P(s)ds, (3.1)
i ty
which is identical to eq. 2.1 describing the angular dependence of the coherent

backscattering cone as a sum over P(s). Note that this holds whatever P(s)
and (5¢?) are.
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3.2. Brownian motion of colloidal scatterers

(65°) is easily obtained for independent particles undergoing Brownian motion.
Each scattering event defines a scattering vector g, and the phase shift associ-
ated with a displacement é7r(t) of a scatterer is §¢p = qs6r(t). In single scat-
tering (6¢%) = ¢2(6r(t)?) = g2 Dyt, Dy being the Stokes diffusion constant of
the particles [78]. Unlike in single scattering, ¢, in multiple scattering has ran-
dom directions and a wide distribution of moduli ranging between 0 and 2ky.
Therefore, (6¢°) = (q26r(t)*) = (¢?)(6r(t)*). The latter identity is justi-
fied by the fact that the g,'s and é7(t)'s are uncorrelated at short times t. With
{q?) = 2k3(1 — cosb,) = 2kil,/l, one obtains (6¢°) = (;/1;)(t/27,) where
70 = 1/(Dy(2kg)?) is the characteristic correlation time for single backscatter-
ing. Insertion of {(6¢?) in eq. 3.1 shows several interesting features. First, [, drops
out and C(t) is controlled by the decorrelation on the scale of the transport mean
free path [;. This is very convenient in the evaluation of C(t) since in the diffusion
picture P(s) is also a function of [;, but not of [,. Second, the light scattered on
long paths decorrelates faster than the contributions from short paths. Physically,
for a speckle spot to significantly change its intensity, the phases of the contribut-
ing fields need to change by about 27, which is achieved earlier for longer paths,
since phase shifts accumulate proportional to the number of scattering events along
the paths. The important implication of this is that in dynamic multiple scattering
particle motion is probed at distance scales shorter than the optical wavelength.
Depending on the typical path length probed experimentally (which can be adjus-
ted by sample size, reflection or transmission geometry, absorption etc.) motion
can be measured from a um scale down to a nm scale or even below. For example,
in transmission through a slab, the dominant path length is of order L? /1; and thus
C(t) decays on a time scale 9(l; /L)?, which may be typically < 10~57,. Third,
3t/27g ineq. 3.1 is equivalent to gl, in eq. 2.1 (or to 3/, //, in the case of absorp-
tion) and, therefore, the t-dependence of C(t) is identical to the g*-dependence of
i(q) and to the 1/[,-dependence of 7(0). The expressions for i(g) discussed above
immediately provide a simple theory for C(t), which has, obviously, the same ad-
vantages and shortcomings than those discussed in section 2.1.1. Recent random
walk simulation work [79] suggests that the diffusion theory provides accuracy to
within a few % for typical experimental parameters.

The first experiments of dynamic multiple light scattering [37,74]} which where
carried out on colloidal latex suspensions at vf, above a few % in backscatter-
ing and transmission confirmed the above features, including the effects of fi-
nite sample size [74], finite laser coherence length [75], finite absorption length
[76] and the analogy between C(t) and i(q) [76]. As all required parameters
(7,1, L, 70, 1a,...) could be obtained either experimentally or from Mie scatter-
ing, the comparison between theory and experiment was found to hold quantit-
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atively to within 10%. This novel dynamic multiple light scattering technique is
often called “diffusing-wave spectroscopy, DWS”.

3.2.1. Particle sizing

It is thus possible to determine the hydrodynamic radius R of the scatterers from
a measurement of 7y in “white” suspensions which are not too concentrated (typ-
ically = 1% vf.), so that the diffusion constant is given by Stokes’ formula
Dy = kT/6wnR. Experiments on monodisperse particles with different size
have shown [37,24,74,76,77] that the t/7y-scaling works both in backscattering
and in transmission and the decay of C(t) is well described by the diffusion model.
An example is shown in fig. 5a. However, attention must be paid to account for
single and low order multiple scattering which are not included in the model but
may add significantly to the data [75,80]. Single scattering is easily suppressed in
backscattering by using circularly polarized light of identical helicity in incident
and detected beam. In cases of negligible low order contributions experimental
v-values range from 0.6 to 0.8. An elegant way to eliminate the uncertainty due
to «y (section 2.1.1) is to use monomode optical fibers for injection and detection
of the light deep inside the sample [81]. In this case, the P(s) to be used in C(t),
eq. 3.1, is given by eq. 1.5. Large multimode fiber bundles used for injection and
detection approaches the case of planar incident and detected wave (eq. 1.7) [82].
It is interesting to note that a comparison of dynamic C(t) data obtained in trans-
mission and reflection on the same sample provides a measurement of the static
quantity [;. One of the drawbacks of dynamic multiple light scattering is its lack
of sensitivity to polydispersity of the particle size: On their multiple scattering
paths photons scan the size distribution of scatterers and the measured relaxation
rate is a (I, )-weighted average of the 1/75’s.
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Fig. 6. Effect of hydrodynamic and static hard core interparticle correlations on the average dynamic
relaxation rate normalized to D; / Do (eq. 3.2) per scattering event in high order multiple scattering
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3.2.2. Interparticle correlations

For weak scattering, kolj > 1, the effects of interparticle interactions (section 2.2)
are easily extended to dynamic multiple scattering [37,38,75]. Tt is well known
that the relaxation rate of C(t) in single scattering from monodisperse interact-
ing spherical particles is given by D(q.)q¢> = Dyq?H(q.)/S(q,) where hydro-
dynamic correlations are described by H{(q,), and the short time diffusion coetfi-
cient 1s Dy = Dy H(oo). In multiple scattering, the groups of correlated particles
acting as effective scatterers modify the average relaxation rate Dq(g?) r(4.),
which becomes {D(q:)q?) r(,.)s(4.)- Inserting this expression and the correc-
tion of I, (eq. 2.5) into eq. 3.1 provides a correlation induced relative change of
1 /TD

Ankgy qH(qq)
o - F 5 ‘!d 5
# D.g/G qs (00) (gs)gsdq

D H
Tl; - -DD 2nkqg 5
/ q55(9:) F(qs)gsdq.
4]

The first factor (D/Dy) reflects the effect of hydrodynamic interaction on
the short time diffusion constant, irrespective of whether or not the sample mul-
tiply scatters light, and the second describes the multiple scattering correction
through a modification of (¢?). The latter term evaluated for hard monodisperse
spheres [25,83] is shown in fig. 6 for various sphere sizes as a function of the
particle volume fraction. The influence of interactions becomes pronounced at
high volume fractions and small particle size, but almost disappears for particles
above = 1pm diameter: For large particles the oscillations in S(q.) and H(q,)

(3.2)
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are at small g, so that they more efficiently average in the integrals of eq. 3.2 than
for small particles. Knowing this correction a measurement of C(t) allows to
determine D, up to very high (= 50%) volume fractions. This has been demon-
strated first by Fraden [25] and Qiu [83]. The smallness of the multiple scattering
correction for large spheres was exploited to study H(g;) to some extent [84].
Measurements of C(t) have been extended to binary mixtures [40] of colloidal
spheres, but in this case a quantitative comparison with theory suffers from the
lack of expressions for H(g). At even higher concentrations binary mixtures or
monodisperse suspensions undergo, respectively, a glass [85] or crystal [B6] trans-
ition visible by the appearance of a long time tail in C'(t) which is very useful to
establish phase diagrams.

3.2.3. Short time dynamics

The fact that DWS probes motion at much smaller distance and time scales than
conventional dynamic light scattering has been exploited to study the cross over
from ballistic to diffusive motion of spheres [87] and has provided evidence for
long time power law behavior of the velocity correlation function which scales
with the fluid viscosity [88]. DWS has also been used to study the effect of hy-
drodynamic interactions on the sedimentation velocity, its variance and diftusion
in fluidized suspensions [89].

3.3. Convective motion

Multiple scattering speckles are sensitive to relative motion of scatterers other
than Brownian motion. This was first illustrated by C(#) measurements on latex
suspensions under Poiseuille flow [90]. If the particle’s displacements ér; are
not independent but completely correlated due to (deterministic) convective flow,
the relevant phase shift §¢ due to two successive scattering events () and (i + 1)
in the expression for C(t) is ki(ér; — é754,). Since ér; = w;t, it immedi-
ately follows that a homogeneous velocity field v; = const. does not generate
temporal speckle fluctuations. Inhomogeneous velocities, however, cause phase
fluctuations. These are given by the velocity difference on the length [, since
consecutive scattering events have on average a distance /. For uncorrelated
successive scattering events ([, = ;) and homogeneous shear at rate I" one again
finds the familiar expression (eq. 3.1) for C'(£), the mean square phase shift per
step now being (6¢?) = (t/7.)%. The characteristic rate is 1/7, = Dliko/v/30
and the numerical factor /30 results from angular averaging. The t? dependence
of (8¢?) - as opposed to the t-dependence for random motion — is the signature
of the deterministic nature of the shear motion. For inhomogeneous shear such as
Poiseuille flow or plug flow the decay of C(t) somewhat deviates from the above
form, since the cloud of diffusing photons does not scan the different regions



174 G. Maret

of the flow field with equal weight [91]. Recent experiments comparing planar
flow, Poiseuille flow and Couette flow [92] confirm this and are in quantitative
agreement with theory. It is thus possible to distinguish different types of flow
and to determine shear gradients in turbid liquids by dynamic light scattering. In
transmission through a slab this can be done even without detailed knowledge of
the multiple scattering properties of the sample as [; essentially drops out of the
expression for C'(t). The Couette experiments have been extended to higher I’
values into the regime of hydrodynamic instabilities [92]. Above a critical shear
rate, a characteristic convective roll pattern (so-called Taylor rolls) appears. The
associated additional shear is clearly seen in C(t), and by focusing the incident
beam to an area smaller than the roll diameter and scanning the incident beam pos-
ition makes possible to visualize the otherwise invisible rolls through the position
dependence of 7,. An example is shown in fig. 5b. These experiments can be ex-
tended to turbulent flow opening the possibility of scale dependent measurements
of (I'%) [93].

Longitudinal relative displacements of the particles generated by ultrasonic
waves modulate multiple scattering speckle patterns in a very similar way and
by comparison of theory and data the ultrasound amplitude can be estimated op-
tically in turbid solid or liquid media [94].

3.4. Recent applications of “diffusing wave spectroscopy”

After the establishment of the principles of dynamic multiple light scattering on
well characterized model suspensions more complex turbid systems begin to be
studied. Among the large number of interesting materials we emphasize emul-
sions, paints, foams, dairy products and biological tissue. Coarsening and aging
of foams has been investigated by Durian et al. [95,96] describing the dynam-
ics as a stochastic sequence of bubble rearrangement events which — despite of
their rare occurrence — are easily detected by the extended photon cloud . Similar
measurements were performed recently on flowing foam [97]. Experiments on
very dense suspensions of monodisperse emulsion droplets provide evidence for
droplet shape fluctuations with amplitudes as small as a few A at a droplet size
above 1pm [98]. Another example is the monitoring of gelation of milk by rennet
action as an early stage in cheese production [99].

3.5. Imaging through turbid media

The recent progress in coherent and incoherent light transport through turbid me-
dia has initiated substantial work on imaging “beyond one transport mean free
path”. The central question is how well can an object be located when buried
(in this sense) deep inside the medium. Two approaches can be distinguished,
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roughly: analyzing (1) all diffusing photons, or (2) only the ballistic and “‘snake-
like” photons which have not completely lossed directional information. In (1)
the object differs from the turbid medium either by enhanced transparency or
enhanced absorption and therefore modifies the photon cloud. It acts as a sort of
source or sink for diffusing photons and therefore generates a glow or shadow, re-
spectively, on the sample surface. These features are less pronounced and broader
for deeply buried objects than for objects near the surface, since photons passing
by the object spread in a cone of /= 90° opening towards the surface. Thus, the
width of the feature allows to estimate the depth location of the object while its
in plane location 1s given by the center of gravity of glow or shadow [100]. In
other words, the spatial resolution degrades linearly with the distance from the
surface. Speckle tomography [101-103] works along the same lines; if the object
— which in this case may be undistinguishable from the medium - is moved, the
corresponding changes of the speckle pattern are most pronounced in the surface
region closest to it. In the second approach (2) the “direct” photons are separated
from the diffusing photons either by time gating the early arriving photons in a
pulse experiment [104], or by coherent (heterodyne) detection of the high fre-
quency modulated incident beam. In (2) the detected signal decays exponentially
with the sample thickness, but because of the high sensitivity of optical detectors
(T' = 1071 detectable) sharp images over 10 to 100 scattering mean free paths
may be obtained.

3.6. Medical applications

Biological tissue looks turbid and opaque because of strong scattering and strong
absorption in the visible. There is, however, a window of relatively low extinction
in the near infrared, with {;-values of some 100pm to some mm or more [105].
This allows to apply the imaging concepts discussed in section 3.5 to visualize or
locate contrasted objects such as blood vessels, coagulates or dye-stained tumors
even a few cm deep inside the body. Although one has little hope so far for the
emerging imaging devices to compete with NMR or X-ray imaging techniques
in terms of in depth resolution and polyvalent use, their expected low cost and
spectroscopic resolution may result in useful specific diagnostic devices.

4. Conclusion: light versus electrons

This lecture has illustrated analogies and differences between multiple scattering
of light and electrons. They are summarized here in terms of advantages and
disadvantages of light versus electron scattering:
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For the case of light. Single scattering is well understood for many types of
particles. Well characterized scatterers are available (particle’s size, shape, re-
fractive index, absorption coefficient, density can be tailored at will.). The mean
free paths [, and [, are precisely calculated and easily adjustable for many sys-
tems. Inter-particle correlations are controllable and well described theoretically
for spheres. The coherence lengths of lasers are much larger than typical mul-
tiple scattering paths, there are always interference effects. Making mesoscopic
optical samples (L =~ [;) or (L = M) with well defined geometry is possible.
The small divergence and extreme monochromasy of laser beams combined with
small detectors provide almost arbitrarily good directional control allowing for
the study of single channels (speckle spots). High resolution spectroscopic tech-
niques are available for precise measurements of frequency correlations, time of
flight or particle motion. Absorption and incoherent scattering can be made neg-
ligible, which is equivalent to “zero” temperature in electronic systems. Last but
not least there is no photon photon interaction.

Against the case of light. Scattering is more complex due to the vector wave
nature of light. The optical scattering efficiency is weak, in particular at small
energies (Rayleigh regime); therefore strong light localization seems very difficult
to reach, and — if at all — only in a small window of parameters. The coupling to
magnetic fields via the Faraday effect is weak.
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