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Visualization of flow in multiple-scattering liquids
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Abstract. – We have performed quasi-elastic multiple-light-scattering experiments on a sus-
pension of colloidal particles in Brownian motion into which a capillary with Poiseuille flow of the
same suspension was inserted. We show that the time correlation function of the backscattered
light, measured at various points on the sample surface, provides information on the position
of the capillary and on the flow rate, demonstrating the possibility of imaging flow in turbid
media under conditions of no static scattering contrast.

The field of multiple light scattering has rapidly evolved within the past decade after the
discovery of coherent backscattering [1], [2]. By exploiting the principles of diffusing light, it has
become possible, for example, to locate and image absorbing or transparent objects even when
buried several optical transport mean free paths (1) l∗ inside the multiple-scattering sample
[3], [4]. Besides the static properties of multiple-scattered light, its time-dependent fluctuations
have been widely studied [5]-[7]. The latter technique, which extends the usual Quasi-Elastic
Light Scattering (QELS) from the regime of highly diluted systems [8] to turbid, concentrated
suspensions, is sometimes called Diffusing Wave Spectroscopy (DWS). In DWS, the multiple
scattering of light is described as a random walk of photons. On their tortuous way through
the sample, the photons pick up time-dependent phase shifts on scattering from the particles
in motion. The resulting time-dependent fluctuations of the speckle pattern of the scattered
light probe the microscopic dynamics of the scatterers. Therefore, both diffusion constant and
size of the colloidal particles undergoing Brownian motion can be determined. Similarly, time
correlation functions from turbid suspensions undergoing flow provide quantitative information
on shear gradients [9], [10]. This type of DWS requires homogeneous samples of randomly but
uniformly distributed scatterers in motion.

Recently, Boas and coworkers [11] examined the case of a heterogeneous sample consisting
of a spherical liquid inclusion inside a white solid material. Position-dependent measurements
of the time autocorrelation function of the backscattered light provided a low-resolution image

(1) The length over which the direction of propagation of diffusing light inside the sample is
randomized.
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of this hidden spherical cavity. In this experiment, there was contrast both in turbidity and
in dynamics of scatterers between the buried object and the surrounding medium. Solid slab
and included liquid had different photon transport mean free paths and hence, in principle,
as in ref. [4], the included cavity could be imaged by analysing the static intensity profile of
multiple-scattered light. In addition, liquid inclusion and solid surrounding generated dynamic
and static speckle patterns, respectively, so that time fluctuations in the backscattered light
provided additional contrast which was exploited to image the hidden liquid inclusion.

In this letter we report first DWS measurements on samples with a purely dynamic inho-
mogeneity. The sample, described in fig. 1, consists of a thin X-ray capillary (the object),
filled with a turbid colloidal suspension and embedded in a large cell containing the very same
suspension (the medium). The contrast which allows us to localize and visualize this hidden
object is due to the different types of motion of scatterers inside and outside the object, inside
laminar Poiseuille flow, outside purely Brownian motion (which of course also exists inside the
capillary). Note that, the optical transport mean free path inside and outside the capillary
being identical, static multiple light scattering does not provide contrast. As discussed below,
photons having crossed the region of flow inside the capillary on their random path through
the sample contribute in a different way to the decay of the time correlation function g1(t) than
photons scanning regions of sole Brownian motion. The temporal decay of g1(t) thus depends
on the positional coordinates with respect to the entrance and the exit point of diffusing light
intensity of the sample. This allows to localize and visualize a dynamic inhomogeneity.

In quasi-elastic multiple light scattering, the motion of particles can be measured by
exploiting the time autocorrelation function g1 of the scattered electric field E: g1(t) =
〈E(0)E∗(t)〉/〈|E(0)|2〉. In a backscattering experiment using a homogeneous semi-infinite
liquid sample of suspended Brownian particles, g1 has the well-known approximate form [7]

g1(t) = exp
[
− γ
√

3t
2τ0

]
. (1)

Here τ0 = (4Dk2
0)−1 is the Brownian decay time, which can be measured in single scattering [8]

(with D the diffusion constant of scatterers, k0 the optical wave vector) and γ is a constant of
order 2, related to the boundary conditions in the photon diffusion approach. In our geometry
of a quasi–semi-infinite liquid sample with a buried capillary containing flow, the evaluation
of g1(t) becomes more involved. In addition to the

√
t/τ0-decay of g1 due to the stochastic

Brownian motion there is a linear t-dependent contribution caused by the deterministic motion
due to the flow [9], [10]. For our experimental case of a large capillary (diameter d > l∗) the
characteristic time scale of this linear time dependence is τFlow =

√
30/(k0l

∗Γ ) where the
average(2) shear rate Γ is related to the flow rate Q by Γ = 16Q/(πd3). For the decay of
the time correlation function not to be dominated by the Brownian motion of scatterers τFlow

must be smaller than τ0. Above the characteristic crossover time τc = τ2
Flow/4τ0 between the

two types of motion, g1 is dominated by flow. The spatial distributions of both motions being
inhomogeneous in our geometry (fig. 1), only parts of the photon cloud scan the additional
dynamics due to flow. This contribution to the time correlation function is given by the
probability that a photon crosses the capillary on its way through the sample. This probability
is a non-trivial function of the capillary position and its diameter d and, similar to ref. [4], the
relative contributions of the two types of motion to g1(t) depend on the location of the exit
point of the detected light. In the case of a very thin capillary (d < l∗, at most one scattering
event inside the tube) an expression for the position-dependent correlation function has been

(2) The factor
√

30 in τFlow is valid for planar shear flow (ref. [9]) and for planar Poiseuille flow [12]
but approximate in our case of cylindrical Poiseuille flow.
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Fig. 1. Fig. 2.

Fig. 1. – Sketch of the light scattering cell to realize spatially localized flow inside a turbid liquid. A
large cell (5 cm × 4 cm × 2 cm) is completely filled with a concentrated colloidal suspension. Laminar
Poiseuille flow of the same suspension occurs inside a pipe system consisting of an X-ray capillary
(optical glass, length: 3 cm, diameter d = 1.5 mm, wall thickness: 1

100
mm) and two heat-bent canullae

sticked end on. A tube connected to the capillary delivers suspension from an elevated tank at flow
rates controlled by its height. The capillary can be positioned at arbitrary x- and y-positions.

Fig. 2. – Time correlation functions for different flow rates. The capillary is placed at x = 2.8 l∗ inside
the cell and centred with respect to the incoming laser beam (y = 0).

derived [13]. Our case of l∗ < d (random walk of the photons also inside the capillary) has, to
our knowledge, not been treated theoretically yet. Notwithstanding, our experiments show that
valuable information can be obtained without knowledge of the exact functional dependence
of the time correlation function. Simply by observing deviations from eq. (1) caused by the
flow, we can localize the flow, visualize the capillary and, in principle, construct images.

We use a vertically polarized mono-mode Ar+ laser beam (λ = 514.5 nm, waist ≈ 1 mm)
incident on the sample cell as indicated in fig. 1. Approximately one coherence area of the
backscattered light is collected onto a photomultiplier tube. In order to reduce the contribution
of single scattering we detect depolarized light (VH-configuration). A PC-controlled correlator
determines the autocorrelation function g2(t) of the scattered intensity. Since we work with
pure liquid samples, all detected light contributes to a fluctuating speckle pattern and, in
contrast to the work of Boas et al. [11], we are not concerned with the problem of non-ergodicity
and ensemble averaging [14]. Hence, by using the Siegert relation [8] we obtain the field
autocorrelation function g1(t). Our turbid liquid consists of a monodisperse suspension of
polystyrene beads (τ0 = 2.66× 10−4 s, diameter: 120 nm) in water, which were characterized
by electron microscopy, single light scattering in the dilute regime and standard multiple-
light-scattering experiments in backscattering and transmission geometry [7]. This provides
l∗ = 69 mm and D = 3.55× 10−12 m2/s.

First, we carefully checked that scattering contributions of the glass wall of the X-ray
capillary are negligible. The capillary was positioned at the front side of the cell in contact
with its wall (defined as x = 0, fig. 1) and vertically centred with respect to the incident
laser beam (y = 0). The correlation function measured in this configuration without flow
matched perfectly the correlation function obtained using the identical set-up but without
X-ray capillary.
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Fig. 3. Fig. 4.

Fig. 3. – Time correlation functions for various positions of the capillary (x = 2.8 l∗ (⊕), 4.2 l∗ (+),
5.7 l∗ (4), 7.1 l∗ (•), 8.5 l∗ (3), 9.9 l∗ (5), 11.3 l∗ (2), y = 0) compared to the case of no flow (◦).
Inset: The maximum difference ∆g of these correlation functions with respect to the Brownian case
as a function of the x-position of the capillary.

Fig. 4. – For a fixed x-position of 7.1 l∗ inside the cell, ∆g is shown as a function of the y-position of
the flow. The width of the capillary is indicated by the line.

Figure 2 demonstrates the sensitivity of our method to the flow rate inside the capillary
embedded in the Brownian environment. For the case of no flow, g1(t) has the square-root
time dependence as expected from eq. (1). Small short time deviations from

√
t are due to

the finite size of the incident laser beam. With increasing flow rate, increasing deviations from
eq. (1) are observed at small and intermediate times, whereas all curves show a tendency to
merge at long times. Note that even for the lowest flow rate Q = 0.22 ml/s the crossover
time τc = 2.03 × 10−7 s is very short and hence the short-time Brownian regime (t < τc) is
not visible in these data. τc is in the range of our shortest measurable correlation time, so
the flow is most sensitively probed by the short-time decay of g1(t). This is obvious from the
general feature of DWS that the short-time decay of g1(t) is dominated by long paths and
vice versa [7]. Long paths have a higher probability of crossing the capillary than short paths.
For large times, the decay in g1(t) is governed by Brownian motion because most of the short
paths have not crossed the capillary, so the curves tend to coincide for all measured flow rates.
If the depth of the capillary inside the turbid liquid is known, this measurement provides a
method to measure flow rates.

Next, we examined up to which in-depth position x of the capillary a flow contribution to
the decay of the measured time correlation function of the backscattered light can be detected.
Figure 3 shows g1(t) at different depths x of the capillary, at y = 0 and Q = 0.50 ml/s. Up
to x = 11.3 l∗, we observe a clear deviation of the correlation function from the Brownian
case at short and intermediate times. This can be explained as above by the time (t)-path (s)
relation t = 4τ0(l∗/s) in DWS [7]. Short times correspond to long paths, so at short times
a higher fraction of the photon cloud inside the turbid liquid sees the tube and contributes
to the non-Brownian decay in time correlations. At larger times the curves come closer and
eventually merge, which again indicates the less important contribution from short paths to
the linear time decay of g1 due to flow. Consequently, for increasing depth of the flow, the
curves converge at progressively shorter times to the form of g1(t) given by eq. (1).
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The inset of fig. 3 shows the maximum difference ∆g between the measured correlation
functions and the case without flow, plotted against the x-position of the flow inside the con-
tainer. This plot reveals a clear monotonic variation of ∆g with x, illustrating the decreasing
contribution of the flow to the backscattered light with increasing x-position of the capillary.
We find a measurable contrast up to x = 11 l∗, which demonstrates the possibility of flow
imaging to depths about an order of magnitude larger than the photon transport mean free
path. The rapid decay in ∆g can be related to the phase shifts picked up by a photon on its
diffusing path to the centre of the capillary and back to the front of the cell: The distance
2x+ d which corresponds to a typical path length (2x+ d)2/l∗ results in a characteristic time
τPath = 4τ0((l∗)2/(2x+ d)2) above which the decay of g1(t) is governed by the Brownian motion
of the scatterers. To measure a contribution of flow to the decay of g1, τPath has to be larger
than the crossover time τc, which provides a time range τc ≤ t ≤ τPath for the application of
our method. As is evident from fig. 3, this time window is very large for small depths x and
becomes rapidly smaller with increasing x due to the decrease of τPath (3). This goes along
with a decrease in the amplitude of the flow effect because of the decreasing photon density
crossing the tube, as in ref. [4].

Finally, we show in fig. 4 the maximum dynamic contrast ∆g, measured for a fixed x-position
of 7.1 l∗ as a function of the y-position of the capillary. For the sake of comparison the width
of the capillary is also shown. The figure clearly demonstrates the feasibility of making the
hidden tube visible. For y = 0, there is a well-defined maximum in ∆g. A vertical displacement
by about one radius of the capillary results in a strong decay of ∆g to very small values. The
direct correlation between the vertical flow position and the change in ∆g allows in principle
the construction of an image of flow. This is a special feature of the case x ≤ d. For d ¿ x,
however, as in ref. [4], we expect that only the centre of gravity of the tube could be located.

In conclusion, we demonstrate that a measurement of the temporal fluctuations of the
multiple-scattered light provides a possibility of localizing and visualizing a dynamic imhomo-
geneity buried up to several optical transport mean free paths inside the sample. Studying
flow in a capillary surrounded by suspended Brownian particles, a window in correlation times
for the applicability of this method is found. It depends on the flow rate and on the depth of
the buried flow. The described principle should allow the imaging of any object undergoing
a distinct motion with respect to the surrounding medium. It, therefore, could be used in
various applications, particularly in biology and medicine.
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