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in 1985 when the first experimental reports of coherent backscattering came 
in. This phenomenon is now successfully explained in terms of constructive 
interference between two waves propagating in opposite directions. New phe- 
nomena have also been found for the coherent beam and the speckles. 

1.4.1 Diffuse Beam: Coherent  Backscattering and Localization 

Roger Maynard, Bart van Tiggelen, Georg Maret, Ad Lagendijk and Diederik 
Wiersma 

On the basis of reciprocity, interference between two opposite paths can be 
argued to be constructive in the backscattering direction of, for instance, a 
slab geometry, and exactly as large as the conventional diffuse background 
calculated from (1.8). At backscattering, the equation of radiative transfer is 
thus 100 % wrongY As always, the width of an interference effect is roughly 
given by the wavelength divided by the typical distance between two typi- 
cal points of scattering, in this case the mean free path, giving AO ~ 1/k~ 
[113]. One can still argue as to what mean free path should be used here: the 
transport or the scattering mean free path. Although a physical argument 
favors the first (recall Fig. 1.2), a rigorous confirmation for anisotropic scat- 
terers (for which both mean free paths differ) has only been given recently 
[114, 115]. Thus 

1 
A9 ~ k~* " (1.17) 

The smallness of 1/kg* in typical experiments probably explains why the 
serendipitous discovery of coherent backscattering was unlikely (Fig. 1.4). 

Coherent backscattering has been investigated in a variety of circum- 
stances. The general reciprocity relation that can be written down between 
the transition matrix (relating the incoming and outgoing electric fields of the 
light) of any event, D, and that for the same event in the opposite sequence, 
R, placed in a magnetic field B0, is [22] 

D(a, k --4 a', k' I B0) = R(a' ,  k' ~ a, k] - B0), (1.18) 

where a (-- 4-) indicates the two possible states of circular polarization. In the 
absence of a magnetic field one can verify that D(a, k ---, a, - k )  = R(a' ,  k --* 
a, -k ) .  This means that for the diagonal channel a = a' the inverse scatter- 
ing sequence has the same scattering amplitude as, and therefore interferes 
constructively with, its opposite pal~ner. More precisely, 

[ R + O [  2=[R[  2+[D[  2 + 2 R e R D * = 2 ( [ R [  2+[O[  2 ) 

at backscattering. This argument leads to the famous and apparently univer- 
sal factor of two for the diagonal polarization channel. Absorption is allowed 
and therefore does not change this conclusion. Reciprocity does not inform us 
about the off-diagonal helicity channel. Experiments [116] and calculations 
[117-119] give a value of only 1.12 for this channel. 
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Fig. 1.4. A measurement of optical coherent backscattering from a dielectric ran- 
dom medium, performed with circularly polarized light with a vacuum wavelength 
of 633 nm. The baekscattered intensity is plotted against the scattering angle, where 
zero corresponds to exact baekseattering. The sample is BaSO4 with a transport 
mean free path of roughly 2.1 lain. The high quality of this measurement was made 
possible by a new technique [122]. The measurement clearly shows the nonanalytic 
cusp in the center caused by extreme long-range diffusion [reprinted from Wiersma, 
Van Albada, van Tiggelen and Lagendijk, Phys. Rev. Lett. 74, 4193 (1995), with 
permission from the American Physical Society] 

The relation D = R at backscattering can no longer be obtained from 
(1.18) once a magnetic field is present. The Cauchy inequality indicates 
tha t  the factor of two can only shrink. In Fig. 1.5 we demonstrate coherent 
backscattering curves obtained by Erbacher, Lenke and Maret in an external 
magnetic field [21]. In a magnetic field the electric polarization vector is sub- 
ject  to Faraday rotation. This experiment proves that  Faraday rotation kills 
the constructive interference, as allowed by reciprocity. These observations 
are in rather good agreement with calculations and numerical simulations 
carried out by Martinez and Maynard [22] (Fig. 1.6). The decrease of the 
enhancement factor seems to be a universal function of VBg*, where V is the 
Verdet constant of the medium describing the rotation angle per tesla, per 
meter. So far, the equi-intensity lines of the scattering cone have been found 
to be circular, as expected if the direction of the magnetic field is along the 
backscattering direction. In order to verify a recent prediction [23] that  these 
lines become elliptical because the diffusion tensor becomes a nondiagonal 
tensor in a magnetic field, one has to change the direction of the magnetic 
field. 

Coherent backscattering has also been studied in relation to gain (using 
scatterers containing dye) [19], as well as in relation to internal reflection on 
the boundaries of the medium [120, 121]. Neither one of these mechanisms 
is believed to break the basic reciprocity argument leading to the factor of 



1.4 Coherent Beam, Diffuse Beam and Speckles: A New View 19 

1.8 

"~ 1.6 

' 1 . 4  

1.2 

1.0 
1 1 ~ , l i l p r , 1 1 , , = t l , , , , f ,  

-.-0.2 - 0 . 1  0.0 0.1 0.2 
scattering angle (degrees) 

o 1.8 

~ 1.7 

1.6 

i l.~ 

" I ~ t '  . . . . . . . .  . . . . . . . .  

i " 
- i  , , L [ I , t ~ 1 I i i , , i , , , , I i 

0 5 10 15 20 
m a g n e t i c  field (T) 

Fig. 1.5. Coherent backscattering in an external magnetic field. Left: angular de- 
pendence of the scattered light intensity in the vicinity of backscattering and for 
circular polarization, as obtained by azimuthally averaging video pictures around 
the peak position, and normalized to the flat background at 0.33 ~ in different mag- 
netic fields: 0 T (solid line), 10 T (short-dashed line) and 21 T (dotted line). The 
long-dashed line corresponds to a fit to theory. The sample - 40 vol-% FR5 (a 
rare-earth-doped paramagnetic Faraday rotator glass), milled to a powder - had a 
length L = 2 mm and a transport mean free path s ~ 70 ~m. Right: magnetic- 
field dependence of the backscattered light intensity at exact backscattering of the 
same sample. The continuous line is a fit to theory. The inset shows a reference 
sample with negligible Faraday rotation but with same cone width [reprinted from 
Erbacher, Lenke and Maret, Europhys. Lett. 21, 55 (1993), with permission from 
Les Editions de Physique, France] 

two. The angular shapes may change however, because in both cases events 
involving long scattering paths will be favored, leading to a narrowing of the 
peak. In Fig. 1.7 we show measurements of the cone carried out in Amsterdam 
with gain [19]. These measurements confirm the picture above. The study of 
gain in combination with multiple scattering comes into the picture because 
it may offer the possibility of a random laser once the gain exceeds a critical 
threshold [123-125]. 

Does reciprocity really lead to an enhancement of exactly two in the 
helicity-conserving channel at backscattering? Indeed, if one applies the equa- 
tion of radiative transfer and adds the coherent backscattering phenomenon 
required by reciprocity, this factor of two follows. However, this procedure 
violates flux conservation since the flux of the cone, though small and of order 
1/ki ,  is added ad hoc and is energetically not accounted for. At present a 
practical t ransport  equation obeying both reciprocity and flux conservation 
is not available. A recent experiment done by Wiersma et al. in Amsterdam 
demonstrated for the first t ime the need for such an equation [36]. This ex- 
periment used samples with a value of kg* ~ 5, and showed an enhancement 
factor lower than the "holy" factor of two predicted by the conventional ap- 
proach for the helicity-conserving channel of circularly polarized light. The 
measured enhancement factor turned out to depend on the density of the 
scatterers, which excludes the alternative explanation of nonsphericity of the 
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Fig.  1.6. Numerical Monte Carlo simulation of coherent backscattering in the 
presence of Faraday rotation. The experimental points were obtained by Erbacher, 
Lenke and Maret [21]. The numerical simulations were carried out by Martinez 
and Maynard [22] and show the coherent-backscattering enhancement factor in 
the + +  circular-polarization channel and in the xx linear-polarization channel. 
The input parameters for the numerical simulation were: )~o = 0.4579 pm, Mie 
particle radius a = 0.1 lam, and indices of refraction of 1.45 for the particle and 
1.65 for the surrounding medium. The Verdet constant in the medium was V = 
1571 rad/(mT) and was assumed to be zero inside the scatterers. In the experiment 
the Verdet constant is known to depend on the magnetic field. Experimentally, 
L/~* = 500 [reprinted from Martinez and Maynard, Phys. Rev. B 50, 3714 (1994), 
with permission from the American Physical Society] 
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Fig.  1.7. Coherent backscattering in a medium with gain. As the gain of the 
medium increases, long paths of the photons achieve more weight and the coherent 
backscattering peak narrows [reprinted from Wiersma, Van Albada and Lagendijk, 
Phys. Rev. Lett. 75, 1739 (1995), with permission from the American Physical 
Society] 
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particles. Only particles with rotational symmetry have a vanishing single- 
scattering signal in the helicity-conserving reflection channel. Since, in single 
scattering, only particles in the skin layer one mean free path in thickness 
contribute, the signal would be proportional to the particle density times the 
mean free path, i.e. independent of density. The experimental results could be 
reasonably explained by recurrent scattering of light between two particles, 
which can be seen as a sort of "super single scattering" from particles with- 
out rotational symmetry, leading to a density-dependent cross-section. This 
explanation also restores energy conservation to second order in the particle 
density [126]. 

The combination of flux conservation and reciprocity leads to a self- 
consistency problem that touches the heart of microscopic theories of strong 
localization [127]. The point is that interference not only modifies reflection 
in backscattering, but also changes the path-length distribution inside the 
system, and thus the background intensity. As a matter of fact the whole 
concept of "path-length distribution", a widely used term to refer to the 
contribution of "photon paths" of a particular length to the measured in- 
tensity, breaks down when interference is allowed. This complicated problem 
has so far only been considered in the diffusion approximation. In this theory 
one calculates the interference contributions to the diffusion constant (1.4), 
thereby requiring reciprocity and flux conservation. The result is, in three 
dimensions [127], 

1 1 l l / q m ' ~  ~ 
- -  - -  d3q . (1.19) 

D DB + D 4rk21 J qmin 

DB is the diffusion constant without interference, qmin is a lower cutoff related 
to the finite sample size and qma• ~ 7r/g is an upper cutoff denoting a lower 
length at which the diffusion approximation breaks down. Although this the- 
ory is far from rigorous, it can be shown to agree with the (phenomenological) 
scaling theory of localization [128]. Moreover, it predicts strong localization, 
here defined as D -- 0, to occur in an infinite medium when 

k~ ~ 1 ; (1.20) 

this is known as the Ioffe-Regel criterion and was first proposed in the sixties 
by Mott as a criterion for localization. In a finite medium Anderson local- 
ization leads to a geometry-dependent diffusion constant and finally to an 
(ensemble-averaged) transmission that decays exponentially with the size of 
the medium, not to be confused with the almost trivial exponential decay of 
the coherent part in (1.6). According to this theory strong-localization phe- 
nomena will be demolished in a magnetic field [129]. Unfortunately, this does 
not agree with exact calculations of the Anderson model with a magnetic field 
[130] or with random-matrix theory [131]. Furthermore, the observation of 
light localization in more than one dimension has turned out to be more diffi- 
cult than suggested by the Ioffe-Regel criterion. At the time of writing, there 
are reports for microwave localization in two [34] and three [33] dimensions. 


