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1 .3  D i f f u s i n g - W a v e  S p e c t r o s c o p y  

Georg Mater and Roger Maynard 

This section focuses on recent work on temporal fluctuations of the intensity 
of multiply scattered light which are caused by motion of the scatterers. 
While parts of the underlying physics had already been discussed in 1983/84 
[85, 86], dynamic multiple scattering of light was introduced by the work on 
calibrated colloidal latex particles in aqueous suspensions [29, 30, 87], and 
has since rapidly evolved into a powerful technique called "diffusing-wave 
spectroscopy" (DWS). 

1.3.1 Basic Physics 

The principle and mathematical treatment of DWS can be found in various 
reviews (e.g. [74, 88]). We therefore just briefly summarize the physics. Co- 
herent light waves (of, say, an incident monomode laser beam) travel inside 
the sample along various random scattering paths described by a photon 
random walk, and set up at the detector a highly irregular intensity pat- 
tern called "speckle" as a result of interference between many waves from 
many paths of various lengths. As in conventional dynamic single scatter- 
ing, the intensity in a given speckle spot fluctuates when the scatterers move 
with respect to each other. Since the transit time of photons along a typical 
multiple-scattering path is much shorter than the time To it takes a colloidal 
particle to move a distance of order of the optical wavelength )~o = 27r/ko 
(To = 1/Dk2o for Brownian motion with diffusion coefficient D), the problem 
is treated in a quasi-stationary approximation. The time-dependent phase 
shifts ~(t) of the scattered optical fields due to motion of the scatterers 
accumulate along the paths, giving rise to speckle fluctuations on a path- 
length-dependent timescale. Consequently, under conditions of strong multi- 
ple scattering, this timescale is much faster than To. Unlike single scattering, 
the timescale does not depend on the angle of observation, but rather on the 
geometry of the scattering cell, which controls the typical path length and 
its distribution. The seemingly complicated calculation of measurable quan- 
tities such as the frequency spectrum or the time autocorrelation function of 
the scattered intensity becomes, in fact, rather straightforward in the photon 
diffusion picture. This is seen in the important autocorrelation function of 
the scattered field [29], G1 (r, t) -- (E (r, to) E* (r, to + t)), which can be put 
into a normalized form gl (t): 

O O  O O  

gl(t) = / P(s)e-(8/t')(8~2(O)ds / [  P(s) ds, (1.15) 
. 1  

where (6~02(t)) is the mean square phase shift per scattering event and P(s) 
is a quantity - the path-length distribution - depending on sample geometry, 
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size and transport mean free path g*, describing how much light intensity 
is scattered on average into paths of length s. For independent Brownian 
motion of the scatterers with mean square displacement (Sr2(t)>, we infer 
that (5~2(t)) = k2o(Sr2(t)) ~ Dk2o t . Explicit formulas for P(s)  and hence 
gl(t) have been worked out for various geometries, such as backscattering 
and transmission from slabs, pairs of optical fibers dipping into a turbid 
sample, and others, and (1.15) has successfully been tested experimentally 
on well-characterized colloidal suspensions (e.g. [74, 88]). 

Another useful description of the correlation function G1 (t) is related to 
the solution of the steady-state diffusion equation [89]. In the case of negligible 
absorption, this equation can be written as 

[ - V  2 + k 2 (t)] G1 (r,t) = S(r)  (1.16) 
Dp ' 

where k 2 (t) describes the attenuation of temporal fluctuations with time, 
Dp = VEl*/3 is the photon diffusion constant and S (r) is the light-source 
distribution. In the case of pure Brownian motion, as described previously, 
k 2 (t) -- 3t/(2Tol*2). This type of analysis can be generalized to the situation 
of a Poiseuille flow of scatterers, which is simply changing the t dependence 
of k 2 (t). 

1.3.2 Specif ici ty of  Diffusing-Wave Spec t roscopy  

DWS has tremendously stimulated the use of light scattering in many fields, 
in particular in the physics and chemistry of colloids and other complex 
fluids. First, it provides - without the need for index matching - quantitative 
information about particle displacements <$r2(t)) up to concentrations well 
into the regime of high-order multiple scattering. It works best when single 
and low-order scattering are negligible and therefore ideally complements 
other recent techniques such as two-color cross-correlation spectroscopy [90] 
and single-mode fiber-optic dynamic light scattering [91-93], which essentially 
suppress the multiple scattered light but still require measurable amounts of 
single-scattering intensity. DWS is therefore well suited to study interparticle 
correlations in colloidal suspensions at very high volume fractions and the 
dynamics of densely packed systems such as concentrated emulsions, foams 
etc. The second important feature of DWS is its extraordinary sensitivity 
to small displacements of scatterers. In contrast to single scattering of light, 
which probes fluctuations on length scales larger than A/2, displacements as 
small as A/1000 (or even less, in principle) can be monitored with DWS. The 
probed length scale is easily controlled experimentally by means of the typical 
path length, i.e. the maximum of P(s) ,  which is set by the sample size and 
shape and the distance between the injection and detection points of the light. 
The examples below highlight fluctuations measurable at length scales down 
to about 0.1 nm, which puts DWS in competition with X-ray and neutron 
scattering, but covering timescales from tens of nanoseconds to hundreds of 
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seconds. Third, DWS experiments on other types of motion, such as shear 
or oscillatory flow, demonstrate the possibility to characterize flow fields and 
measure velocity gradients over the experimentally adjustable length scale g*. 
Fourth, because of the high sensitivity to motion of the scatterers, DWS can 
detect very small numbers of particles undergoing motion with respect to 
their surroundings, making it possible to image or localize them even well 
below the surface of the sample, and to detect sporadic, rare dynamic events. 
Last but not least, DWS is easier to implement experimentally than dynamic 
single scattering of light because of the intrinsically high scattered intensities 
and the rather weak sensitivity to misalignment and definition of scattering 
angle, beam size and polarization. 

DWS experiments [94-96] on the short-time crossover from ballistic to 
Brownian motion of colloidal spheres have clearly revealed a long-time tail 
in the velocity autocorrelation function and a scaling of its characteristic 
timescale with the high-frequency shear viscosity of the solution up to high 
volume fractions, due to hydrodynamic interactions. 

DWS is sensitive to relative motions of scatterers other than Brownian 
motion, as first illustrated by gl (t) measurements on latex suspensions under 
Poiseuille flow [97]. If the particle's displacements ~ri are completely corre- 
lated because of a deterministic motion as in convective flow, the relevant 
phase shift 5~ due to two successive scattering events (i) and (i § 1) in the 
expression (1.15) for gl(t) is ki-(~ri  - ~iri+l). Since ~ri -- v~ • t, it immedi- 
ately follows that a homogeneous velocity field vi = const, does not generate 
any temporal speckle fluctuations. Inhomogeneous velocities, however, cause 
phase fluctuations, thereby generating a decay of gl(t). The phase fluctua- 
tions are given by the velocity difference over the length g*, since consecutive 
random scattering events have on average a separation ~*. For homogeneous 
shear at a ra te /"  one again finds the familiar expression (1.15) for gl(t), the 
mean square phase shift per scattering event now being (6~ 2) .~ (F~*kot) 2. 
The t 2 dependence of (6~ 2 ) - as opposed to the linear t dependence for Brow- 
nian motion - is the signature of the deterministic nature of the shear motion. 
For inhomogeneous shear gradients, such as in Poiseuille flow or plug flow, 
the decay of gl (t) becomes somewhat different since the cloud of diffusing 
photons does not scan the different regions of the flow field with equal weight 
[98]. Experiments comparing planar flow, Poiseuille flow and Couette flow 
[99] clearly demonstrate this and are in quantitative agreement with theory. 
It is thus possible to distinguish between different types of flow and to deter- 
mine shear gradients in totally turbid liquids by dynamic multiple scattering 
of light. The Couette flow experiments have been extended to higher shear 
gradients well into the regime of hydrodynamic instabilities [99 I. Beyond a 
critical shear rate, a characteristic convective roll pattern ("Taylor rolls") 
appears. The associated additional shear is clearly seen in gl (t), and scan- 
ning the position of a tightly focused incident beam allows one to visualize the 
otherwise invisible rolls through the position dependence of the characteristic 
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relaxation rate Fe*ko. These experiments are readily extended to turbulent 
flow, opening the possibility of scale-dependent measurements of (F 2) [100]. 

Small longitudinal relative displacements of the particles can also be de- 
tected with the help of DWS. This is illustrated by DWS measurements of the 
variance of the AC electrophoretic mobility in electrorheological fluids [101], 
and of ultrasound-generated sinusoidal modulation of particle positions, from 
which the ultrasound amplitude could be estimated optically in solid or liquid 
multiple-scattering media [102]. 

1.3.3 Foams and Liquid Crystals 

Foams belong to a class of materials with structural features and optical prop- 
erties very different from those of dense colloidal suspensions, despite their 
overall '~r appearance in many cases. Dense collections of (air) bubbles 
are separated by more or less organized soap films and hence the multiple 
scattering of light cannot be described by scattering from large spheres, but 
rather should be modeled by multiple reflections from more or less random 
surfaces. The coarsening and aging of foams have been studied experimen- 
tally since 1991 [103, 104], describing the overall slow dynamics as a stochastic 
sequence of bubble rearrangement events, which are easily detected by the 
large extension of the diffuse photon cloud, despite the rare occurrence of 
rearrangements. 

Single scattering of light from macroscopically oriented nematic liquid 
crystals is well understood and is treated in many textbooks. It arises from 
collective orientation fluctuations of molecules with anisotropic optical po- 
larizability ~e/e ~ 0. The statics and dynamics of these fluctuations are de- 
scribed in a continuum-elastic model involving several elastic constants (K) 
and viscosities (77). In the one-elastic-constant approximation, the amplitude 
of the light scattered at wave vector q is proportional to (~e/e)2k4okT/(Kq2), 
where kT has the usual meaning. The corresponding relaxation time is 
(Kq2/~) -1, very similar to that of Brownian motion, (Dq2) -1, with a "ro- 
tational diffusion constant" K/~ - D. Both scattering amplitude and relax- 
ation time diverge for long wavelengths (q ~ 0), as it does not cost elastic 
energy to perform a rotation at q = 0. In practice this divergence is avoided 
by a large-scale cutoff given by the sample size or by a finite electric or 
magnetic field. 

Samples of macroscopically oriented nematic liquid crystals look turbid, 
although much less so than non-oriented samples. The multiple scattering 
from unoriented samples has not been studied in detail so far, and thus 
we focus on dynamic multiple scattering of light studied in [79-84]. In the 
above model, the low-q divergence of the static structure factor results in a 
vanishing scattering mean free path ~, while the transport mean free path 
e* stays finite. The photon diffusion constant becomes anisotropic and the 
orientationally averaged value of ~* is of order (~e/e) 2 K/(kTk2o) [79-84]. 
On scales beyond g* we therefore recover an anisotropic photon diffusion 
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picture (see Sect. 1.4.3), and for not too large an anisotropy Se/e the dynamic 
correlation function gl(t) can be written in a form very similar to (1.15). 

1.3.4 Imaging with Diffusing-Wave Spectroscopy 

Recent years have seen substantial progress in optical imaging "beyond the 
transport mean free path" (see e.g. [105] and references therein). Various 
techniques, such as interferometric detection of the weak unscattered coherent 
beam, time-resolved selection of early-arriving almost-unscattered photons, 
and measurements of photon density waves and diffuse photon intensities, 
have been applied in order to locate and eventually image objects which are 
buried several optical transport mean free paths deep inside the medium. 
In these techniques the optical contrast of the object with respect to the 
turbid medium is due to enhanced transparency or enhanced absorption, 
both of which modify the spatial distribution of the diffuse light intensity. 
The object basically acts as a source or a sink for diffusing photons, and 
therefore generates a glow or shadow respectively on the sample surface. The 
glow or shadow is less in amplitude but larger in size for deeply buried objects 
than for objects near the surface, because of the diffusive spread of photons 
from the object to the surface. This allows one to localize the object. The 
spatial resolution degrades roughly linearly with the distance of the object 
from the surface [106]. 

The DWS principle can also be used to image or locate objects which have 
dynamic contrast because of some motion with respect to the surrounding 
medium. While in this case the average scattered intensity does not necessar- 
ily depend on the position at the sample surface, the temporal fluctuations of 
it - as seen in gl (t) - do. This idea was suggested by work on speckle tomog- 
raphy [107], which pointed out the fact that if scatterers are moved even a 
small distance, the corresponding changes of the speckle pattern are most pro- 
nounced in the surface region closest to these scatterers. Boas et al. [89, 108] 
have reported images of a spherical cavity containing a colloidal suspension 
in Brownian motion (with g* = 1.5 mm), located 0.75 diameters below the 
surface of a solid multiple-scattering medium (with e* = 2.2 mm). In this 
case, there was contrast both in the scattering and in the dynamics. Heck- 
meier et al. [109-112] have performed experiments on objects having different 
types of purely dynamic contrast (i.e. identical g* values inside and outside 
the object). Position-dependent gl(t) measurements [109] from a capillary 
containing a flowing colloidal suspension embedded in the same suspension 
undergoing Brownian motion revealed that the flow rate, depth and in-plane 
location of the object can be obtained and gl (t) is in excellent agreement 
with simple photon diffusion theory [110]. The dynamic contrast has a maxi- 
mum for a well-defined correlation time t. This is because gl(t) at very short 
times is dominated by Brownian motion (which is of course identical inside 
and outside the object) as compared to flow, while at very long times only 
scattering paths too short to sense the embedded object contribute to gl (t). 
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It is also possible to obtain dynamic contrast between Brownian particles 
having different sizes [110]. In the particularly sensitive situation in which 
the gl(t) measurement was made on a dark spot of the static speckle of a 
solid background medium containing a dynamic inclusion undergoing Brow- 
nian motion or flow, objects could be located as deep as five diameters and 
more than 30e* inside the medium [111]. Finally, the probability distribution 
of the scattered intensity sampled at long times, rather than the full time 
dependence of gl (t), can be used for imaging purposes [112]. 

1.3.5 Perspectives 

The above principles are expected to turn out useful in many applications, in 
particular in biomedical sciences. This may be illustrated by a recent exper- 
iment [208] on superficial burns of animal tissues, where indications about 
the depth of burn could be obtained from the analysis of the temporal decay 
of gl(t); the superficially burned layer of tissue behaves like a solid, while the 
nonburned tissue below generates time-dependent speckle fluctuations due to 
blood flow. 

Diffusing-wave spectroscopy has become a very useful tool to probe dy- 
namical properties of multiple-scattering media of various kinds. Studies on 
calibrated colloidal suspensions have borne out its potential to investigate 
fundamental problems in the physics of fluids, as illustrated for instance by 
the observation [94-96] of the short-time motion of spherical particles gov- 
erned by hydrodynamic interactions. Many novel contributions of DWS to 
diverse problems in statistical physics are expected, primarily because of the 
wide range of time and distance scales covered. The quantitative understand- 
ing of DWS allows one to tackle more complex systems now. Foams, sand, 
liquid crystals, emulsions and polymer gels doped with scattering particles 
have been mentioned briefly, and many more applications are foreseen, par- 
ticularly important perhaps for the quality control of food, cosmetics and 
paints. Multiple-scattering imaging and remote sensing of buried objects in 
motion may evolve into a versatile tool of particular interest in medical ap- 
plications, given the relatively low optical extinction of biological tissue in 
the near infrared and the possibility to select particular objects spectroscop- 
ically. Examples include blood vessels, coagulates and dye-stained tumors. 
Such applications will be complementary to and, with the availability of low- 
cost sources and detectors of light, substantially cheaper than current NMR 
or X-ray imaging techniques. 

1.4 Coherent Beam, Diffuse Beam and Speckles: 
A New View 

Studies in the last 10 years have substantially modified the old picture of 
multiple scattering of light. The most dramatic revolution was undoubtedly 
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in 1985 when the first experimental reports of coherent backscattering came 
in. This phenomenon is now successfully explained in terms of constructive 
interference between two waves propagating in opposite directions. New phe- 
nomena have also been found for the coherent beam and the speckles. 

1.4.1 Diffuse Beam: Coherent  Backscattering and Localization 

Roger Maynard, Bart van Tiggelen, Georg Maret, Ad Lagendijk and Diederik 
Wiersma 

On the basis of reciprocity, interference between two opposite paths can be 
argued to be constructive in the backscattering direction of, for instance, a 
slab geometry, and exactly as large as the conventional diffuse background 
calculated from (1.8). At backscattering, the equation of radiative transfer is 
thus 100 % wrongY As always, the width of an interference effect is roughly 
given by the wavelength divided by the typical distance between two typi- 
cal points of scattering, in this case the mean free path, giving AO ~ 1/k~ 
[113]. One can still argue as to what mean free path should be used here: the 
transport or the scattering mean free path. Although a physical argument 
favors the first (recall Fig. 1.2), a rigorous confirmation for anisotropic scat- 
terers (for which both mean free paths differ) has only been given recently 
[114, 115]. Thus 

1 
A9 ~ k~* " (1.17) 

The smallness of 1/kg* in typical experiments probably explains why the 
serendipitous discovery of coherent backscattering was unlikely (Fig. 1.4). 

Coherent backscattering has been investigated in a variety of circum- 
stances. The general reciprocity relation that can be written down between 
the transition matrix (relating the incoming and outgoing electric fields of the 
light) of any event, D, and that for the same event in the opposite sequence, 
R, placed in a magnetic field B0, is [22] 

D(a, k --4 a', k' I B0) = R(a' ,  k' ~ a, k] - B0), (1.18) 

where a (-- 4-) indicates the two possible states of circular polarization. In the 
absence of a magnetic field one can verify that D(a, k ---, a, - k )  = R(a' ,  k --* 
a, -k ) .  This means that for the diagonal channel a = a' the inverse scatter- 
ing sequence has the same scattering amplitude as, and therefore interferes 
constructively with, its opposite pal~ner. More precisely, 

[ R + O [  2=[R[  2+[D[  2 + 2 R e R D * = 2 ( [ R [  2+[O[  2 ) 

at backscattering. This argument leads to the famous and apparently univer- 
sal factor of two for the diagonal polarization channel. Absorption is allowed 
and therefore does not change this conclusion. Reciprocity does not inform us 
about the off-diagonal helicity channel. Experiments [116] and calculations 
[117-119] give a value of only 1.12 for this channel. 


