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Abstract. We have studied the influence of magneto-optical Faraday rotation on coherent backscattering
of light experimentally, theoretically and by computer simulations of Monte-Carlo type. The consistency
of these three approaches reveals new aspects of the propagation of vector waves in turbid media with and
without Faraday rotation. Experimentally, we have demonstrated that the Faraday rotation may almost
completely destroy the reciprocity of light paths. However, as shown by the simulations, the cone of coherent
backscattering may not only be destroyed but also shifted off the exact backscattering direction, parallel
to the magnetic field, as long as the amount of circular polarization is not completely destroyed by the
multiple scattering. The relationship between coherent backscattering, depolarization and Faraday rotation
are explained by a simple path model of vector waves. This leads to a new characteristic correlation length
required to properly describe the influence of Faraday rotation on multiple light scattering.

PACS. 11.80.La Multiple scattering – 42.25.Dd Wave propagation in random media –
42.25.Hz Interference – 78.20.Ls Magnetooptical effects

1 Introduction

Coherent backscattering (CB) of waves in multiple scat-
tering media has been well known for electrons [1] and
light [2,3] for some time. During this period it has become
more and more clear that CB is a fundamental effect in na-
ture. CB is closely related to the fact that light paths are
reversible, i.e. “if I can see you, you can see me”. More pre-
cisely, it is closely related to the theorem of reciprocity [4],
which states that the scattering matrix of the reversed
path is the transposed matrix of the direct path. In the ex-
act backscattering direction, a light path and its reversed
path have exactly the same length and are thus always
interfering constructively. This gives – theoretically – a
backscattering enhancement of two [5]. In directions devi-
ating slightly from the exact backscattering direction, this
coherent backscattering enhancement disappears and the
scattered intensity decreases to the ‘normal’ non-coherent
intensity. The angular width of this so-called CB cone is
proportional to the turbidity of the medium. The latter is
quantified by the inverse length 1/`?, `? being the trans-
port mean free path which is the characteristic step length
of the random walk of the light in the medium. In the ma-
jority of cases, the cone width is generally smaller than
about one degree. CB is present in any multiple scattering
medium. It is a very ‘stable’ effect, i.e. it is not destroyed
by the motion of the scatterers, nor by absorption, nor by
a short coherence length of the incident light [6] (only the
shape of the cone is liable to change but not its maximum
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value); in fact, CB can even be observed with sunlight [7].
The only effect, which violates the theorem of reci-
procity and thus destroys CB, is Faraday Rotation (FR)
(and, closely related to it, magnetic dichroism). Of course,
CB is destroyed by non-elastic scattering, e.g. by fluores-
cence or by relativistic moving scatterers. It is unclear so
far to which extent CB influences (reduces) the diffusion
constant of waves. This possible influence of CB on the
diffuse light propagation is called ‘weak localization’. In
very strongly scattering media even a ‘strong localization’
of waves was predicted by Anderson [8].

The influence of FR on CB was initially predicted by
Golubentsev [9] and MacKintosh and John [10]; these
authors estimated that the effect should be very small.
Nevertheless, we observed this effect for the first time ex-
perimentally [11–14] and fabricated samples in which FR
almost completely destroys CB. Figure 1 displays an
experimental example. However, our experimental results
and the simulations of Martinez and Maynard [15,16]
could not be fully explained by existing theories: we found,
for example, that the influence of FR on CB should depend
on the direction of the magnetic field and that the char-
acteristic correlation length is only of the order of `? [14].

Therefore, we developed a new path model which ex-
plains not only well the effects which had been observed so
far but also new observations reported here. In the sim-
ulation part of this work we observed, for example, an
angular shift of the CB cone off the exact backscatter-
ing which is accounted for by light incident perpendicular
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Fig. 1. CB cone at 0 tesla (above) and 23 teslas (below);
intensity versus angle θx,y off exact backscattering direction.
Angle section 0.15◦×0.15◦. Without magnetic field the CB en-
hancement at θb = 0 is 1.82, with magnetic field 1.30. Sample:
molten, Faraday rotating glass powder mixed with 1% SiO2

beads (radius a = 90 nm); `? was estimated to 100µm. Exper-
imental conditions: room temperature, circular polarized light.

to the magnetic field direction. This model reveals that the
influence of FR on CB is basically different in the regime
of short light paths (of the order or shorter than the cir-
cular depolarization length) and the regime of relatively
long light paths. Moreover, it gives an exact definition of
a new characteristic length describing the influence of FR
on multiple light scattering.

In this article we first briefly summarize the theory of
CB, especially with respect to the relation between the
reciprocity of light paths and the depolarization of light.
A more detailed description of this part is found in [6].
Second, we present our model describing the influence of
FR on CB. The validity of this model is then quantita-
tively verified by comparison with numerical simulations
of Monte-Carlo type. Finally, we compare our (partially
new) experimental data to the new theory and to simula-
tions and find very good quantitative agreement.

2 Theory

2.1 Coherent backscattering

In multiple scattering samples, an incoming (light-) wave
is scattered randomly numerous times. The outgoing wave
can be explained as a superposition of many wavelets, cor-
responding to all possible light paths in the sample. Utiliz-
ing coherent light gives a typical interference pattern, the
so-called speckle pattern [17] which alters quickly when
the scatterers move. When averaging out various different
configurations of the sample, these speckles disappear and
the scattered intensity solely depends on ‘geometrical’ fac-
tors. This corresponds to the intensity which is obtained

after a non-coherent addition of all wavelets. However, in
the exact backscattering direction one constructive inter-
ference effect survives this averaging, the so-called CB ef-
fect. CB is the interference between a multiple scattering
light path and its reversed path (if existent in the setup)
which, in itself, is not influenced by the movement of the
scatterers, as both paths always have the same length.
When considering scalar waves, this interference enhances
the contribution to the intensity of each pair of paths, the-
oretically by a factor of two. Off the exact backscattering
direction, a phase shift is introduced between the direct
and the reversed path and the coherence – in the follow-
ing denoted by C – between both paths decreases to zero
with increasing angle of observation, i.e. increasing back-
scattering vector qb := kout − (−kin). Values of C can
vary between −1 and 1; in the majority of cases, however,
it is positive. At larger angles, the backscattered inten-
sity corresponds to the ‘incoherent’ background (C = 0).
The shape of the normalized CB cone as a function of qb

is given by 1 + Ims
Ims+Iss

C(qb). Ims and Iss are the (inco-
herent) intensities of the multiple scattering light paths
and of single scattering, respectively. The pre-factor con-
taining these intensities is necessary as single scattering
does not contribute to CB and consequently reduces the
enhancement factor of two. Its precise value depends on
the incident and detected polarization state, the kind of
scattering, absorption and on FR. The coherence C(qb)
is the Fourier transform of the radial intensity distribu-
tion I(r′) (with flux in the exact backscattering direction)
at the surface of the sample around an illuminated spot
at r′ = 0. The vector r′ denotes the distance (in the sur-
face) to the origin, i.e. the distance between beginning and
end points of a light path [18] in the sample. Thus, one
obtains [19,20]:

C(qb) =
1
Ims

∫
r 6=0

∞

I(r′) cos(qb · r′)dr′ (1)

≈
∫
s>0

∞

p(s) exp(−1
3
s `?q2

b)ds , (2)

p(s) is the normalized probability distribution of all paths
with length s. I(r′) and p(s) depend on the sample (type
of scatterers, index of refraction etc.) and the polarization
of light. The lower bounds of the integrals take into ac-
count the fact that single scattering does not contribute
to CB [21]. Equation (2) is a diffusion approximation
assuming that r′(s) has a Gaussian distribution around
r′ = 0. The transport mean free path `? is the char-
acteristic length of the random walk and it is the dis-
tance over which the light loses, on average, the informa-
tion about its initial direction. Approximately, this is also
the average distance between beginning and end points
of the light paths in backscattering geometry. Thus, the
full width at half maximum of the cone should be of or-
der (∆q)FWHM ≈ 1/`? what can be verified by evaluating
the integral in equation (2) [20]. With absorption, p(s)
must be replaced by the normalized probability distribu-
tion p(s, `a) ∝ p(s) exp(−s/`a) where `a is the average
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absorption length. In the diffusion approximation, equa-
tion (2), the curve shape with absorption is obtained from
the curve shape without absorption by the replacement
q2
b → q2

b + q2
a, q2

a = 3/`a`?, and renormalization such that
C is equal to 1 in the exact backscattering direction. This
renormalization is necessary as absorption does not re-
duce C.

Until now, we have only considered scalar waves. How-
ever, it is not evident that a correlation exists between the
polarization on the direct and the reversed paths. In fact,
for Rayleigh scattering it can be easily seen that the ma-
trix M� (which describes the reversed path), is not the
same as the matrix of the direct path M⊗ but that of
the transposed matrix: M⊗ = MT

�. This correlation be-
tween the direct and reversed paths can be proved more
generally, independent of the kind of scatterers, directly
from Maxwell’s equations and is known as the theorem of
reciprocity. As a consequence, a factor of two can only be
achieved if the incident and detected polarization states
are equal (or if M is symmetric which, however, is not
the case, in general). More generally, the incident polar-
ization state P (detected polarization state A, respec-
tively) of the direct path must be equal to the detected
(incident) polarization state of the reversed path. Only
in this case the amplitude e⊗ on the direct path, given
by e⊗ = AM⊗P, is equal to the amplitude of the re-
versed path e� = PM�A = PMT

⊗A for any light path
represented by the matrix M. In the case of orthogonal
detected polarization states there is no CB enhancement
in the diffusion limit. However, due to the non-negligible
amount of short paths (say less than ten scattering events)
in backscattering direction, depending on the scatterers,
the light may not be completely depolarized and there may
be some CB enhancement also in the orthogonal polariza-
tion states. We will see that the depolarization plays an
important role for the influence of FR on CB. We define
the remaining degree of linear and circular polarization Pl,
Pc as following:

Pl(s) =
Ixxinc − I

xy
inc

Ixxinc + Ixyinc

' exp(−s/`p,l) (3)

Pc(s) =
I

++

inc − I
±
inc

I
++

inc + I
±
inc

' exp(−s/`p,c), (4)

Iinc denoting the average incoherent multiple scattered in-
tensities which are detected in the same linear (denoted by
‘xx’) or circular ‘++’ polarization state and in the orthog-
onal (‘xy’ or ‘±’) polarization states, respectively, than the
incident light. Normally, a certain polarization state is de-
stroyed exponentially with the characteristic average de-
polarization lengths `p,l and `p,c. Depending on the scat-
terers, `p is of the order of `? for Rayleigh or small Mie
scatterers to some lengths of `? for large Rayleigh-Gans-
Debye scatterers. With these definitions one finds for the
CB enhancement in the exact backscattering direction for
the orthogonal channels [6] (in case of a rotational invari-
ant sample with respect to Pl):

C±qb=0 =
2Pl

1−Pc

∣∣∣∣
ms

=
IoPl

I±inc

∣∣∣∣
ms

(5)

Cxyqb=0 =
Pc + Pl

1−Pl

∣∣∣∣
ms

=
Io

1
2 (Pc + Pl)
Ixyinc

∣∣∣∣
ms

(6)

Cqb=0 =
1 + Pc

2
+ Pl

∣∣∣∣
ms

, (7)

‘ms’ indicates, that only the multiple scattering light paths
(in backscattering direction) are taken into consideration,
Io is the total (unpolarized), incoherent backscattered in-
tensity. Equation (7) represents the case of unpolarized
light which is the weighted average value of the cases ‘++’
and ‘±’ (or ‘xx’ and ‘xy’). The curve shapes of the CB
cones in the different polarization states depend on p(s)++ ,
p(s)± etc. which may not only depend on the path length
s but also on the configuration (denoted by s) of a light
path. In fact, the CB cone is not necessarily rotational
invariant around the exact backscattering direction. The
distributions p(s), polarization included, can be obtained
easily by Monte-Carlo simulations.

2.2 Coherent backscattering and Faraday rotation

FR rotates the polarization of light which propagates par-
allel to a magnetic field B by an angle ∆α = VB ·∆r
(clockwise with direction of observation against direction
of propagation). The specific parameter V is the Verdet
constant, ∆r is the distance vector of propagation. In
the case of circularly polarized light, this rotation corre-
sponds to a positive or negative phase shift∆ασ = σ∆α =
σko(n− − n+)∆r for circular right (σ = +1, right-handed
rotation in direction of propagation) or left (σ = −1) po-
larized light, respectively. Looking always in direction of
propagation, ∆α displays the opposite sign on the direct
and the reversed paths. However, we are interested in fol-
lowing Saxon’s notation, which does not change the coor-
dinate system on the direct and the reversed path (only
in this notation the matrix of the reversed path is just the
transposed of the direct path). Then, ∆α has the same
sign on both paths. Thus the scattering matrices which
describe the FR part in a multiple scattering light path
are the same on the direct and the reversed paths but
not the transposed matrices of each other as is required
by the theorem of reciprocity. In fact, if FR is present,
due to the external magnetic field B, the multiple light
scattering itself is no longer invariant to the transforma-
tion r → −r which is necessary for the reciprocity. With
FR the total matrix describing the scattering path, is a
mixture of matrices being the transposed, or the same
on the reversed path, which generally obtains the result:
M�(B) 6= MT

⊗(B). This inequality is necessary to destroy
CB, however it is not sufficient as will be observed fur-
ther on.

Until now, there is no exact analytical expression for
the influence of FR on CB. Probably, this is due to the
fact that FR acts on the amplitude (especially if the light
amplitude is more linear polarized) as well as on the
phase (in case of circular polarization) and both effects
may not necessarily result in the same consequences for
the CB cone. Moreover, on each segment of a light path,
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the influence of FR on CB is correlated over a distance of
about `p,c. This fact becomes even more important as in
backscattering direction there are many short light paths.
In the following we will try to explain the influence of
FR on CB in a more illustrative way using different ap-
proaches. First we show up the difference between circular
and linear polarized light, where we make the approxi-
mation that the light (even after scattering) always stays
purely circular or linear polarized. Then we will present
calculations where the polarization is treated correctly but
where we still make the simplification that the scattering
and FR are independent of each other. In a next step we
will put emphasis on the correlation between FR and the
scattering which leads to a new characteristic correlation
length when FR is involved into multiple light scatter-
ing. In all these approaches we will neglect the fact that
the light propagates in a half-infinite space. Nevertheless,
these models explain well the simulated and measured re-
sults which will be presented in the following chapters.

So, let us make the approximation that the incident
light is circularly polarized and does not change its polar-
ization state by multiple scattering (this corresponds to
a scalar wave approach). Between two scattering events,
FR creates a phase shift of ∆αi = VB · ∆ri. For sim-
plicity, we assume isotropic scattering, i.e. 〈∆r〉 = `?.
The total phase shift on a certain light path is αFR =∑
∆αi = VB ·

∑
∆ri = VB · r, where r is the dis-

tance vector between the starting and end points of the
random walk. On the reversed path the phase shift has
the opposite sign. Consequently, with FR, the phase shift
qb · r′ in equation (1) must be replaced by the phase shift
qb · r′ + 2αFR = (qb + 2σVB) · r′, i.e. qb → qb + 2σVB,
where σ = ±1 is the handedness of the circular polar-
ization. In the scalar wave approach the CB cone is not
destroyed but shifted off the exact backscattering direc-
tion by a scattering vector −2σVB. In order to destroy
CB, the light must be depolarized (this point will be dis-
cussed in more detail further below).
The circular polarization of the light is destroyed, on aver-
age, for path lengths s > `p,c. Approximately, this can be
taken into consideration by assuming that, after the dis-
tance `p,c, the polarization of the light has flipped to the
circular right or left polarization state with equal prob-
ability [10]. Thus, one obtains for the FR induced phase
shift on a light path of n scattering events:

αFR =
∑
{np}

(
±

np∑
i=1

∆αi

)
(8)

=
∑
{np}

(
±

np∑
i=1

VB ·∆ri

)
(9)

−→on

average

n∑
i=1

VB ·∆rFR
i = VB · rFR . (10)

The inner sum represents the phase shift on path seg-
ments with length to the order of `p,c (with np scattering
events), the ‘±’-sign represents the random helicity flip
of the circular depolarization after np scattering events.

These ‘±’-signs can be omitted on average over all path
configurations; however, with the consequence that the to-
tal phase shift αFR is no longer correlated with qb · r in
equation (1) now. In order to denote this fact, the vec-
tors ∆ri and r obtained the index ‘FR’. Besides, we as-
sume that there is no correlation between the helicity flip
and the change of the direction of propagation. This is
not always quite correct and will be discussed further be-
low (anticipating the result of this discussion, we will see
that, as a consequence of such correlations, the transport
mean free path `? must be replaced by a new character-
istic length `?FR, which is only approximately equal to `?,
in order to obtain the total FR induced phase shift).

Due to the helicity flips, qb · r and αFR are no longer
correlated and the cosine in equation (1) can be trans-
formed, on average over all path configurations of length
s as follows:

〈cos(qb · r + 2αFR)〉=〈cos(qb · r)〉〈cos(2αFR)〉 (11)

≈ exp
[
−1

3
s`?q2

b

]
exp

[
−1

3
s`?FR(2V B)2

]
(12)

= exp
[
−1

3
s`?(q2

b + q2
FR)
]

(13)

with q2
FR =

`?FR

`?
(2V B)2 . (14)

In the first line we used the independence of r and αFR and
〈αFR〉 = 0. The factor 2 in front of αFR derives from the
(same) phase shift on the direct and the reversed path.
The second exponential term in line (12) is obtained in
analogy to the first one (transformation of Eqs. (1)→(2))
by assuming that the FR induced phase shift makes a ran-
dom walk with step length VB∆rFR where 〈∆rFR〉 = `?FR.
This result which was essentially obtained by and used in
former works [9–13] is in more or less qualitative agree-
ment with experimental results. Assuming an exponential
distribution of ∆rFR, this result can also be obtained by
the transformation

〈cos(2
∑

∆αi)〉 = 〈cos(2∆α)〉n (a)
= (15)[

arctan(2V B`?FR)
2V B`?FR

]n
(b)
≈ exp[−1

3
s`?FR(2V B)2] ,

where we made use of the independence of the phase shifts
∆αi and their symmetry around zero. The approximation
(15b) is the better the smaller ∆α and/or the larger n.
For short paths and/or larger ∆α, a better approxima-
tion is given by evaluating equation (15a), resulting in
q2

FR = 3/(`?`?FR) ln[arctan(2V B`?FR)/(2V B`?FR)] which was
used in [14]. Obviously, for some samples, this approxima-
tion already fits quite well.

Consequently, the shape of the CB cone with FR is
obtained by the replacement q2

b → q2
b + q2

FR. Quite similar
to absorption, FR cuts off the longer paths and rounds off
the top of the cone. However, in contrary to absorption,
the incoherent background is not changed and the CB cone
is destroyed.

Until now we used a (helicity flip) model where we as-
sumed that the polarization of the light can only occupy



R. Lenke and G. Maret: Magnetic field effects on coherent backscattering of light 175

the circular eigen-states. However, when using linearly po-
larized incident light and a sample of Rayleigh scatterers,
the light will stay linearly polarized all along the light
path. In this case, instead of a phase shift, a rotation of
the polarization of the light is introduced by FR. Finally,
this will result in different absolute values of the ampli-
tudes e⊗ and e�. This mechanism of the influence of FR
on CB is closely related to the fact that, with the assis-
tance of FR, it is possible to build an optical diode which
permits the possibility: “I can see you, but you cannot see
me”. An optical diode is composed of two linear polar-
izers twisted by 45◦ with a material with a FR of 45◦ in
between. The light is able to pass this isolator in one direc-
tion, but not in the other. Rayleigh scatterers for example,
polarize the light, especially if the light is scattered under
90◦. Therefore, it is possible to imagine an optical diode
built up of Rayleigh scatterers which are embedded in a
FR material (in contrary to an optical isolator, the light
is not absorbed but is scattered in a different direction).
Of course, scatterers in a turbid sample do not correspond
to a perfect optical diode, but to an imperfect diode. As
a consequence, the amplitudes on a pair of paths are in-
fluenced differently and CB decreases. In some sense, by
imaging that the light paths in a turbid sample resemble
a heap of spaghetti, with FR, the heap of the direct paths
will become different from the heap of the reversed paths.

So far, we explained with ‘hand-waving’ arguments the
influence of FR on CB for the extreme cases of purely
circular and purely linear polarized light. Of course, reality
lies in-between. Combining the influence of FR on phase
and amplitude one obtains instead of equation (2):

C(qb, VB) = (16)
1
Ims

∫
Ib(r)

2|e⊗||e�|
|e⊗|2 + |e�|2

cos(qb · r + 2αFR)dr

≈ 1
Ims

∫
Ib(r)

2<[e⊗e∗�]
|e⊗|2 + |e�|2︸ ︷︷ ︸
(b)
=: C(VB, s)

cos(qb · r)dr (17)

where ‘∗’ denotes the complex conjugate, < the real part.
The term C(VB, s) reflects the coherence in the exact
backscattering direction between the direct and the re-
versed path s as a function of FR. It does not only de-
pend on r but also on the configuration of the path.
The approximation (17) is obtained after the replace-
ment [24] cos(qb · r + 2αFR) = cos(qb · r) cos(2αFR) −
sin(qb · r) sin(2αFR) and is only valid if the second term
is on average zero, i.e. if there is no correlation between
qb · r and αFR. Generally, this is only true if B ‖ kin.

In the following we present the analytical calculations
of C(V B, s) for the different polarization states, where we
made the following approximations: (i) The light paths
are divided into pieces of average length `?FR which were
represented by the 2 × 2 scattering matrices Si. These
matrices are supposed to be identical on average over all
path configurations. (ii) Between those scattering events
the wave experienced a FR of ∆αi (represented by rota-
tional matrices Fi). (iii) All matrices are independent of

each other. (iv) Only light paths in an infinite medium
without boundaries are considered. (v) The matrices Si
are independent of the magnetic field which will be dis-
cussed in the Appendix in more detail.

Still, the matrices Si fulfill the theorem of reciprocity
and they have, on average over all path configurations
(indicated by 〈.〉), the following symmetries [6]:

〈|S11|2〉 = 〈|S22|2〉, 〈|S12|2〉 = 〈|S21|2〉, (18)
〈<[S11S∗22 + S12S∗21]〉 = −〈|S11|2 − |S12|2〉, (19)
〈S11S∗12〉 = −〈S21S∗22〉, 〈S11S∗21〉 = −〈S12S∗22〉 , (20)

which follow from the assumption that the scatterers are
distributed isotropically and that the results should be
indifferent to a rotation of the system. The following rela-
tions (21–24) between C and P have been obtained by
setting M = SnFn...S2F2S1F1 and by evaluating equa-
tions (3, 4) and (17b). They have been proved by recursion
in the number of scatterers and Faraday rotations. We ob-
tain for both n = s/`?FR independent scatterers and n in-
dependent Faraday rotations ∆αi, in the case of circularly
polarized incident and detected light (++) on average over
all path configurations:

C(V B, s)++ = 〈cos(2∆αi)〉n (21)

which is the exact same result as obtained by the helicity
flip model, equations (11–15).

For the linear polarization we obtain with the same
approximations

C(V B, s)xx =
Pl(s) + C(V B, s)++

1 + Pl(s)C(V B, s)++ · (22)

The term Pl(s) was defined in equation (3). It is the depo-
larization in absence of a magnetic field, i.e. without FR.
With magnetic field, the linear depolarization Pl(s, V B)
is given by Pl(s)C(V B, s)++ as can be seen directly from
the denominator in equation (22).

Consequently, contrary to C(V B, s)++ which ranges
from 1 to 0, in the case of linear polarization, the extent
to which CB is destroyed by FR, depends on the depolar-
ization of the linear polarization state. If the light is not
depolarized, as may it be the case in two dimensional sam-
ples (polarization perpendicular to the scattering plane),
Cxx is not influenced at all by FR. This result can also
be explained with the model described above, e.g. by de-
composing the linear polarization state in a circular left
and right polarized wave: if the linear polarization state
is not destroyed, both circular states will be completely
correlated and experience the same phase shift but of op-
posite sign all over the path; consequently FR has no ef-
fect. In equation (22), the denominator and thus the path
length distribution p(s), which is necessary to calculate
the shape of the cone, is magnetic field dependent. Ad-
ditionally, the amount of single scattering may change.
Strictly speaking, and only in the case ‘++’, the shape of
the cone with FR can consequently be explained by the
substitution q2

b → q2
b + q2

FR. However generally, and espe-
cially for long paths, the term Pl(s) is rather insignificant



176 The European Physical Journal B

and negligible. Within this approximation we achieve the
same expressions for Cxx and C++ .

For crossed circular polarizer and analyzer we obtain

C(V B, s)± =
2Pl(s)

1−Pc(s)
· (23)

Thus, Pc(s) which was defined in equation (4), and the
opposite circular polarized cone, if existent, are not in-
fluenced by FR. The latter corresponds to an analytical
prediction of MacKintosh and John [10] and to numerical
simulations of Martinez and Maynard [15,16]. It can be
understood in the helicity flip model as follows: if a helic-
ity flip occurs during a scattering event on the direct path,
due to reciprocity, a helicity flip must also occur on the
reversed path. As the incident and detected polarization
states are orthogonal (C±), the polarization of the direct
path is always orthogonal to the polarization of the re-
versed path (in the helicity flip model only the states ‘+’
and ‘−’ are allowed). As also the orientation with respect
to the magnetic field is reversed on the reversed path, it
follows that α�FR = α⊗FR.

For opposite linear polarized states (xy) we achieve:

C(V B, s)xy =
Pl(s) + Pc(s)C(V B, s)++

1−Pl(s)C(V B, s)++ · (24)

As a consequence, if there is a cone in the opposite linear
polarized state, it is influenced by FR. However, if the ex-
ternal magnetic field is parallel to the incident light, this
effect is superimposed on a boundary effect: the first step
of the light penetrating into the sample can be consid-
ered as a ballistic propagation. On this step FR acts on
all paths in the same way, which can be considered as a
collective rotation of the polarization of the cone. This ro-
tation can be compensated for by a corresponding rotation
of the analyzer. We will discuss this effect more precisely
in the section including the Monte-Carlo simulations.

Expressions (22–24) can be integrated over all path
lengths s:

C(V B)± =
2Pl

1−Pc

∣∣∣∣
ms

(25)

C(V B)xx =
Pl + C(V B)++

1 + PlC(V B)++

∣∣∣∣
ms

(26)

C(V B)xy =
Pl + PcC(V B)++

1−PlC(V B)++

∣∣∣∣
ms

(27)

C(V B) = Pl +
1 + Pc

2
C(V B)++

∣∣∣∣
ms

. (28)

In the case of V B →∞, i.e. C(V B)++ = 0, the expressions
Cxx, Cxy and C have the consistent value Pl and in the case
V B → 0 we obtain equations (5–7).

To summarize, within the approximation that the scat-
tering and FR are independent of each other, we found a
simple relationship between CB, FR and the depolariza-
tion of light. As will be seen from the Monte-Carlo simu-
lations of ‘real’ cases, these relationships are not fulfilled

exactly. However, qualitatively, they explain the results
rather well. Without magnetic field, the relations between
CB and P are always exact [6].

In analogy to this analytical evaluation of the influence
of FR on CB, we have also studied the influence of optical
activity in multiple scattering samples. Naturally, Cxx and
C++ are not influenced, since optical activity follows the
theorem of reciprocity. Cxy and C± are influenced to the
extent that Pl decreases with increasing optical activity.
Pc remains unchanged under optical activity.

Now we want to discuss a possible correlation between
(i) the influence of FR on CB, (ii) the random walk of the
waves and (iii) the depolarization of light. Let us consider
one Rayleigh scattering event, circular polarization and
kin || B. In this case, if the light is scattered in backward
direction, FR changes sign as the direction of propagation
changes with respect to B. This change of sign is com-
pensated for by the fact that the polarization flips to the
opposite circular polarization state. Thus, FR is added up
after reflection and is not compensated for, as is the case
for optical activity. In what concerns the randomization
of the FR induced phase shift ∆αFR, there is no differ-
ence if the wave is reflected or if it goes straight ahead
(especially in this case, FR is not randomized by such a
scattering event). This idea, which is the basic point of
this model, can be generalized independently of the ori-
entation of B: from the point of view of FR, a scattering
angle θ, if combined with a helicity flip, is equivalent to a
scattering angle θ−π without helicity flip. So, if the wave
experiences a change of the circular polarization state, we
will replace the scattering angle θ by θ−π and keep the
original polarization state. Thus we get rid of the correla-
tion between the random walk and FR. In the following,
this procedure will also be applied if the wave is not in a
pure circular polarization state after scattering. Thereto,
the scattered amplitude is decomposed into the two cir-
cular polarized eigen-states and the above described op-
eration is applied to the part of the intensity which was
scattered into the opposite state. In the representation of
circular eigen-states (denoted by ‘±’) the scattering ma-

trix of Rayleigh scattering S(θ)=
(

1 0

0 cos θ

)
takes the form

S(θ)± = 1
2

(
cos2(θ/2) sin2(θ/2)

sin2(θ/2) cos2(θ/2)

)
±
. Consequently, an incom-

ing circular polarized wave, e.g. (1, 0)±, is depolarized by
the scattering to 1

2 (cos2(θ/2), sin2(θ/2))±. So, the wave
is scattered in the direction of θ, with polarization
(1, 0)±, with a probability proportional to [cos2(θ/2)/2]2
and with the polarization (0, 1)± with a probability
∝[sin2(θ/2)/2]2. Following the operation described above,
the scattering angle θ is replaced by θ−π for the part
(0, 1)± which, afterwards, is attributed to the part (1, 0)±
again. This procedure corresponds to a modified helicity
flip model as only pure eigen-states of the circular polar-
ization are considered. With respect to the correlations
of FR on a multiple scattering light path, the scattering
amplitude in ‘FR-space’ is given by (cos2[θ/2] + sin2[(θ −
π)/2])/2 = cos2(θ/2); the first and second term represent-
ing the probability that the light either stays in the same
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polarization state, or respectively experiences a helicity
flip. With ‘FR-space’ we want to emphasize that, after the
substitution θ→ θ− π, the position of the wavelet, corre-
sponding to the influence of FR, does no longer correspond
to the position in the sample. The coordinates in FR-space
will be indicated by ‘FR’. The ‘differential cross-section’
from the point of view of FR, is cos4(θ/2), whereas the
differential cross-section in ‘real’ space is (1 + cos2 θ)/2.
In analogy to the definition of the length `? in case of
anisotropic scattering, one can define a correlation length
`?FR = `/(1 − 〈cos θFR〉) for the influence of FR on CB
where the differential cross-section in FR-space is used.
For Rayleigh scattering one obtains `?FR = 2`, i.e. the in-
fluence of FR on CB is two times stronger than expected
from former theories.

In the model described above, due to the circular de-
polarization of the light, a multiple scattering light path
is split up into a whole bunch of independent light paths.
This procedure is correct as long as there is no correlation
between the two circular eigen-states. In order to verify the
range of validity of this model we compared (by numeri-
cal simulations) the destruction of C(V B, s)++ in real space
with the propagation in FR-space (with the correspond-
ing modified cross-section) as a function of V B and the
number of scattering events n. According to our model, in
FR-space, the influence of FR on CB just corresponds to
a simple phase shift given by αFR = VB ·rFR, whereas the
influence of FR on CB in real space, especially due to pos-
sible correlations between ∆α and S, is more complicated.
We made the approximation of an infinite medium with
no boundaries, corresponding to paths which start and
end somewhere within the sample. This approximation is
justified by the fact that we essentially want to study the
validity of the modified cross-section model, i.e. justify
the necessity of the new length `?FR which is a parameter
being defined in the diffusion limit. All other effects, e.g.
the differences in C++ and Cxx, vanish in the diffusion limit
but not the difference between `?FR and `?. The procedure
was the following: in FR-space we always ‘followed’ the
same (incident) circular polarization state, which might
experience helicity flips (due to depolarization). After the
last scattering event, we counted only those light paths
which would have arrived with the same circular polariza-
tion state as incident (i.e. experienced an even number of
helicity flips). As already mentioned above, in FR-space,
a phase shift of αFR = VB · rFR is introduced by FR,
where rFR is the propagated distance between beginning
and end point of a light path in FR-space. As in FR-space
only the phase but not the absolute value of the amplitude
is changed (|e�| = |e⊗|) the coherence C(V B, s)++

FR of cir-
cular polarized waves, between the direct and the reversed
paths, decreases as a function of FR like

C(V B, s)++ =
∫
W (rFR) cos(2VB · rFR)dr(s), (29)

where W (rFR) is the intensity distribution around the
starting point of the random walk, for scatterers which
are modified according to the correlation between FR and
the scattering. Equation (29) is also the definition of the
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Fig. 2. Upper plot: Rayleigh scattering. Lower plots: Rayleigh-
Gans-Debye scattering with size parameters ka = 3.3 and
ka = 7. Points: simulated decrease of coherence C++

between a
multiple scattering light path and its reversed path in a sample
without boundaries, for different numbers n of scatterers and
n + 1 steps in a Faraday rotating media, as a function of

V B. Lines: Fourier transform fW (K) of the end-to-end point
distribution of the same paths in ‘FR-space’. These figures
clearly demonstrate that the interpretation of the influence
of FR on CB by the modified scattering matrices fits very well.

characteristic function W̃ (K, s) :=
∫
W (r) cos(K · r)dr of

the random walk, if 2VB is replaced by K. So, in order
to verify our model, we simulated a random walk with the
modified scatterers and calculated numerically the char-
acteristic function W̃ (K). Finally, we compared this curve
with the curve C(V B, s)++ , according to its definition in
equation (17), which was obtained by Monte-Carlo simu-
lations for the scatterers in real space. Figure 2 shows the
results for different numbers of scatterers, i.e. for differ-
ent path lengths. In any case, the coincidence is amazingly
good. There is a minor difference of about 5% for less than
10 scatterers and relatively large values of V B`? which will
be discussed further below.
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the anisotropy in ‘FR-space’ is different from the anisotropy
in real space. Also the circular depolarization length `p,c is
calculated numerically (curve is stretched by a factor of 5).

We also studied Rayleigh-Gans-Debye scattering. In
this case, for the differential cross section in FR-space one
obtains: cos4[θ/2](F [θ]+F [θ−π])/2 where F [θ] is the form
factor [25]. Figure 2 shows the results from the simulations
for different size parameters. Again, the coincidence is very
good. In fact, the small difference in the case of Rayleigh
scattering diminishes with increasing size parameter. In
figure 3 the correlation length `?FR is plotted for Rayleigh-
Gans-Debye scattering as a function of the size parameter
ka (wave vector times particle radius).

This analogy between the influence of FR on CB and
a random walk in FR-space is not generally true for a
single light path, rather only on average over all possi-
ble configurations of the light paths of a certain length.
This is due to the fact that FR also changes the ampli-
tude, i.e. the probability of a certain light path, what was
not explicitly taken into account in this model. In other
words, the correlation between the two circular polariza-
tion states (i.e. between the bunches of light paths men-
tioned above), which we did not take into consideration
in this model, is only negligible on average in all configu-
rations of the light paths. However, after this averaging,
this model matches quite well, even for short paths. The
smaller the size parameter of the scatterers, the stronger
the influence of the scattering on the polarization, i.e. the
amplitude of the light. Rayleigh scatterers even linear po-
larize the light by scattering under 90◦ and thus create, to
some extent, a correlation between the two circular polar-
ization states. Obviously, this is the reason for the small
discrepancy in our model in regards to Rayleigh scatter-
ing.

With this model one can also understand possible
correlations between qb · r and αFR. As explained in
the beginning, in the extreme case where the incident
circular polarization is not destroyed, qb · r and αFR are
completely correlated, resulting in a shift of the top of
the cone away from the exact backscattering direction.
But in this case, the trajectory in FR-space and real
space are identically. Obviously, this statement can be

generalized: qb ·r and αFR are the less correlated the more
different are the trajectories in FR-space and real space.
By definition, these trajectories become different after
the distance `p,c (characteristic circular depolarization
length), i.e. the correlation is completely destroyed after
several lengths of `p,c. Generally, for spherical particles,
the larger the size parameter ka, the longer the circular
depolarization length `p,c with respect to `? (see Fig. 3)
and consequently, the stronger the correlation. This has
dramatic consequences for the influence of FR on the CB
cone as is exemplified in the Monte Carlo simulations.

To summarize, due to the symmetry breaking of the
external magnetic field, FR influences phase and ampli-
tude of the light on the direct and reversed paths dif-
ferently. In the diffusion limit, this influence can be re-
duced to random changes of the complex light amplitude
on pieces of paths with the average correlation length `?FR.
On each segment, these changes correspond to a differ-
ence in phase of 2∆α between the direct and reversed
path, with 〈(2∆α)2〉 = 2

3 (2V B`?FR)2. For Rayleigh-Gans-
Debye scattering, one finds for the FR correlation length
0.9 . `?FR/`

? ≤ 2. Below the diffusion limit one can
differentiate between the cases where the path lengths
are shorter or longer than about `p,c. For shorter paths,
there is a correlation between the angular dependence
of the CB cone, i.e. qb · r and the FR induced phase
shift αFR resulting in the substitution qb → qb + 2σVB.
For long paths (diffusion limit), the substitution is q2

b →
q2
b + (`?FR/`

?)(2V B)2. For the short paths, one finds also
a difference between C++ , Cxx, C± and Cxy as long as the
light is not yet completely depolarized. This model gives
a qualitative picture of the influence of FR on CB. The
reality, due to the backscattering geometry, is a mixture
of short and long paths (about 50% of the light is scat-
tered less than 10 times) and, additionally, the light paths
must fulfill the boundary condition of starting and ending
at the surface of the sample. Therefore, complete analytic
expressions for the influence of FR on the shape of the CB
cone are very difficult.

3 Monte-Carlo simulations

In order to better understand the influence of FR on CB
and in order to verify the predictions that we have ob-
tained in the theoretical part, we made numerical simu-
lations of Monte-Carlo type. The first simulations on this
topic were carried out by Martinez and Maynard [15,16].
They studied the cases of Rayleigh and Mie scatterers
which were embedded in a FR material. However, con-
trary to their work, we not only studied the intensity in
the exact backscattering direction but the entire shape
of the cone, which proved to be interesting due to the
correlations mentioned in the previous section. Moreover,
we also introduced into our simulations real experimen-
tal parameters such as limited sample thickness, limited
resolution of the setup and importantly, the mismatch
of the index of refraction at the surface, which was ab-
solutely necessary to obtain a firm agreement with our
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Fig. 4. Monte-Carlo simulation of CB enhancement ECB as
a function of qb`

? for Rayleigh scattering, circular polariza-
tion, B ‖ kin and an absorption length of `a = 100`?. Solid
lines: Simulations for different V B`?. Dots: curve at zero field
rescaled by q2

b → q2
b + q2

FR, where qFR is given according to the
maximum value of each curve. Up to values of V B`? ≈ 0.5 rad
the rescaled curves match quite well.

experimental results. In the case of anisotropic scattering,
we restricted ourselves to Rayleigh-Gans-Debye scatter-
ing because basic differences, when compared to isotropic
scattering, are due to the fact that `? is longer than the
scattering mean free path ` and that the characeristic
depolarization lengths, especially `p,c, are relatively long
compared to `?. The first condition is fulfilled for both
Rayleigh-Gans-Debye and Mie scattering, the second con-
dition is a little bit more pronounced for Rayleigh-Gans-
Debye scattering. Nevertheless, there should be no basic
differences between Rayleigh-Gans-Debye and Mie scat-
tering.

We used the technique of ‘partial photons’ [6,26] which
is very well suited to the problem of CB as the angular
width of the CB cone is smaller than 1◦, normally. On
each occasion, we averaged more than ≈105 light paths,
sufficient to reduce the fluctuations below 1%. As in the
theoretical section, we assumed that FR acts only on the
coherent wave between two scattering events, i.e. we ne-
glected the influence of FR on the scattering itself (see
Appendix).

3.1 Rayleigh scattering

Figure 4 shows a simulation of circular polarized light, in
the case where the magnetic field B is parallel to the inci-
dent light. It corresponds more or less to the predictions
of former authors, i.e. CB decreases with increasing FR
and the shape of the cone can be described essentially by
the substitution q2

b → q2
b + q2

FR. However, the functional
dependence of qFR on V B is not trivial. In fact, the dif-
fusion approximation, where q2

FR = (`?FR/`
?)(2V B)2 with

`?FR/`
? = 2, see equations (13, 14), is only valid for very

small values of V B`?, i.e. qFR . 0.1. This is due to the
fact that in backscattering geometry there are many short
paths in which the diffusion approximation is very bad.
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Figures 5 and 6 show the results for the CB enhance-
ment, ECB := 1 + Ims

Ims+ss
C, for the cases ‘++’ and ‘xx’ with

the magnetic field perpendicular to the incident light. In
both cases, two secondary maxima appear with increasing
FR. Moreover, E++

CB becomes slightly asymmetrical. We
will expand upon this topic further on, in context with
Rayleigh-Gans-Debye scattering.

The case of linear polarization and B ‖ kin is quite
special. If measured in the usual way, ExxCB will decrease
rather quickly, but ExyCB will increase with increasing FR.
This behavior is explained by the light penetrating a dis-
tance of about one `? more or less ballistically into the
sample. At this distance, FR can be understood to be like
the rotation in a window of the sample holder which can
be compensated for by a rotation of the analyzer by an an-
gle to the order of β′ = 2V B`?. In a more precise (but still
simplified) model we assume that (i) the first and last step
into and out of the sample, i.e. the distances of the start-
ing and end points of the random walk from the surface,
are independent of each other; (ii) that these distances
are distributed exponentially and (iii) that the light paths
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are magnetic field dependent.

between these two points can be treated in the diffusion
limit. With these assumptions one obtains for the angle
between polarizer and analyzer for which the CB cone is
maximal: β′ms = arctan(2V B`β) with `β = `?FR. For small
values of V B`β , the linear approximation of β′V B→0 is
equal to 2V B`β , independent of the exact distribution of
the starting and end points (i.e. independent of approx-
imation (ii)), only the average value is important. The
polarization of the incoherent multiple scattered intensity
has its maximum at the same angle β′ms. However, this
is not the case for the single scattered intensity where
beginning and end points are the same lying at an aver-
age depth of ` inside the sample. For the single scatter-
ing intensity one finds β′ss = 1

2 arctan(2V B`). Moreover,
its polarization is smeared out (i.e. I±ss is no longer zero)
due to the fluctuations of the position of the first scatter-
ing events; with increasing FR one finds that the differ-
ence between its maximum and minimum value decreases
as Iss

V B=0/
√

1 + (2V B`)2. Figure 7 shows a simulation of
ExxCB where the analyzer was twisted by an angle β versus
the polarizer. Without FR, the CB enhancement in the
exact backscattering direction as a function of β is given
by [27]:

Eqb=0
CB (β) = 1 +

Ixxms Cxx cos2 β + Ixyms Cxy sin2 β

Ixxms+ss cos2 β + Ixyms+ss sin2 β
· (30)

Without FR, Cxx is equal to 1 and Ixyss is zero. With FR,
the expressions Cxx, Ixxms, I

xx
ss etc. become magnetic field

dependent and the multiple scattered parts are shifted by
an angle β → β − β′ms whereas Ixxss and Ixyss are shifted
by β′ss. The simulated curves in Figure 7 were fitted
to the equivalent expression (now, the V B dependence
is included):

Eqb=0
CB (V B, β) = 1 +

Ims

Ims+ss
C 1 + ξ1 cos[2(β − β′ms)]

1 + ξ2 cos[2(β − β′ms+ss)]
·

(31)
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ues of ECB as a function of FR as well as the according
phases (i.e. rotations) of the multiple scattered and single plus
multiple scattered intensities. The functions β′[V B`?]ms and
β′[V B`?]ms+ss are characteristic for a sample, i.e. type of scat-
terers, index of refraction etc. and depend on the propagation
of light in a surface layer of thickness ≈ `?. Emin

CB increases for
smaller values of V B due to the fluctuations of the starting
and end points of the light paths in the sample.

The parameters ξ1,2 and β′ms+ss depend on the correspond-
ing parameters of equation (30). In the simulations, as
expected, the maximum is shifted by an angle to the or-
der of 2V B`? with increasing FR. Moreover, according to
equations (30, 31), it can be observed that these curves are
not just cosines and even become asymmetric with FR due
to the fact that β′ms+ss is smaller than β′ms. Quantitatively
(see Fig. 8), we find values for `β of 0.79`?FR for the multiple
scattered and 0.43`?FR for the single plus multiple scattered
part. These quantitative differences may be explained by
the simplifications (i)-(iii) further above. In fact, it is for
example not true that the distribution of the starting and
end points is exponential: the incoming light is convoluted
with the probability for single scattering which does not
contribute to CB and the outgoing light is convoluted with
the intensity distribution close to the surface. In order to
illustrate this effect, we incorporated the refractive index
n of the sample into our simulations. Due to the internal
reflections, the amount of single scattering decreases and
the light intensity near the surface increases. For a sam-
ple with n = 1.6 we found the values `ms

β = 0.675`?FR and
`ms+ss
β = 0.435`?FR. For Rayleigh-Gans-Debye scattering

we again found different values of `β.
We insisted quite strenuously on this case because it is

possible this way to study the influence of the surface on
the scattering experimentally. Theoretically at least, this
problem is in no way trivial.

3.2 Rayleigh-Gans-Debye scattering

In the case of circular polarization and magnetic field par-
allel to the incident light (no figure), the result is quite
similar to the result for Rayleigh scattering. However, CB
is only destroyed to some extent. In fact, the larger the
ratio of `?/` the smaller is the influence of FR on CB.
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Fig. 9. Monte-Carlo simulation of ECB as a function of qb`
?

for Rayleigh-Gans-Debye scattering, size parameter ka = 3,
i.e. `?/` = 4.9, circular polarization, B ⊥ kin and `a = 100`?.
The cone is destroyed only to some extent and shifted by an
angle 2VB`? in direction of the magnetic field (solid lines).

This same result has already been encountered by
Martinez & Maynard. Figure 9 shows the result for E++

CB
with the magnetic field perpendicular to the incident light.
Here, the maximum is shifted in direction of the magnetic
field by the angle 2V B`?. This is due to the fact that with
Rayleigh-Gans-Debye scattering the circular depolariza-
tion is rather minor, i.e. `p,c is much longer than `? (see
Fig. 3). For the part of the light that is not depolarized, the
phase shift αFR is VB ·r′, where r′ is the distance between
beginning and end points of the light paths. Therefore, in
equation (16), qb can be replaced by qb + 2σVB, which
corresponds to a shift of the cone1.

Figure 10 shows the result for ExxCB in the same geome-
try. This time, two maxima appear with increasing FR at
qb = ±2VB. This can be explained by decomposing the
linear polarization into the two circular polarized states,
which experience a phase shift according to the case ‘++’,
but of opposite sign. The height of these maxima corre-
sponds, as expected, to roughly half of the height of the
maximum in the case ‘++’, which is also about the height
of the persisting cone, in the case where the field is parallel
to the incident light.

The appearance of secondary maxima and the asym-
metry of the cone in the case of Rayleigh scattering can
be explained, to some extent, similarly to the case of
Rayleigh-Gans-Debye scattering. However, especially in

1 There is another (relativistic) phenomenon analogous with
the experiment of Fizeau [28], which introduces a different
phase shift φ between the direct and reversed paths: if the
bulk material is moving with the velocity v, both paths differ
by the phase ∆φ ' 2kov/co · r′ (n2 − 1), where ko is the wave
vector in air, co the velocity of light in air, n is the refractive
index of the sample and r′ is the distance between beginning
and end point of the random walk. However, this phase shift
is correlated with qb · r′ and will only change the direction of
the maximum by a scattering vector qv = 2ko(v/co)(1 − n2),
i.e. the maximum is no longer in the exact backscattering
direction.
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Fig. 10. Same situation as in Figure 9 but for the case ‘xx’.
The remaining cone is shifted in the directions ±2VB`?. Note
that in the lower graph, essentially for V B`? = 1.5, there are
also two maxima in the directions qb ⊥ B.

the case ‘++’ and kin ⊥ B, an additional effect appears
which can be better understood by using the random he-
licity flip model where the ‘scatterers’ only flip the polar-
ization between the two circular eigen-states, randomly:
after the first scattering event, the light is in one of the
two circular polarization states with the same probability.
After the first scattering event there is a certain proba-
bility that there will be no further helicity flips on the
rest of the light path with exception of the last scatter-
ing event. Consequently the light experiences a phase shift
αFR = ±VB · r which corresponds to a shift of the cone
in the direction of ∓B. The height of these two maxima
corresponds to the probability of those light paths. This
is the explanation for the secondary maxima in Figure 5.
They are smaller than in the case of the helicity flip model
because of depolarization and correlations of the circular
polarized states.

3.3 Summary

The results we obtained in our simulations correspond
quite well, qualitatively, to the results and predictions
we have made in the theoretical section. It is evident
that there is no quantitative coincidence as the backscat-
tering geometry (half infinite space) implicates a strong
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Table 1. Simulated values of ECB in the exact backscattering
direction at zero magnetic field and for V B`? →∞. If Iss 6= 0
the values of C are given in brackets; kin ‖ B, `a = 100`?,
error 5%. In the case of linear polarization, the simulations
are evaluated as described in Figures 7 and 8. For Rayleigh
scattering, ExyCB passes through a maximum.

circular linear

++ ± max min

2 1.309 (0.463) 1.692 1.185
R
a
y
l
e
i
g
h

↓ V B`?

↓
∞
↓ ↓ 1.246

(0.326)

1.068 1.224 (0.343) 1.17 (0.221)

2 1.156 (0.159) 1.981 1.18
R
G
D

ka = 3

↓ ↓ ↓
1.52 1.114 (0.117) 1.335 (0.339)

restriction on the light paths. Apart from the compar-
isons between simulations and theory we have made, we
also intend to give a short discussion of the results that we
were not able to display here explicitly (see also Tab. 1).

As already mentioned above, in the case of Rayleigh-
Gans-Debye scattering, CB is destroyed to only some ex-
tent. Also with Rayleigh scattering, the cone is never com-
pletely destroyed. In the case B ⊥ kin, for example, the
coherent part of double scattering is not destroyed by FR
because the scattering matrices of the direct and the re-
versed paths, FR included, are the same.

In the cases ‘xx’ and ‘xy’, in the limit of V B`? →∞,
the CB enhancements decrease to the same value (see
Tab. 1) what was predicted by equations (26, 27). For cir-
cular polarization, different values for ‘++’ and ‘±’ are ex-
pected. We found values of 1.22 and 1.07, respectively, in
the case of Rayleigh scattering. For Rayleigh-Gans-Debye
scattering (ka = 3), C++ is only destroyed to 50% due to
the relatively weak circular depolarization. C± was pre-
dicted to be unchanged by FR what is more or less fulfilled
in case of Rayleigh-Gans-Deby scattering.

It is also interesting to note that for Rayleigh-Gans-
Debye scattering, in the case ‘xy’, B ⊥ kin, relatively large
secondary maxima appear. For the sample of Figure 9 one
finds at zero field, in the exact backscattering direction,
ExyCB = 1.178 and at V B `?& 2, ExyCB(qb = ±2VB) =
1.135, i.e. the sum of the coherent part of the side maxima
is larger than the cone at zero field.

Moreover, the simulations confirmed, e.g. for small val-
ues of V B`?, that the influence of FR on CB is greater
for Rayleigh than for Rayleigh-Gans-Debye scattering, ac-
cording to the different values of `?FR.

4 Experiments

Faraday rotation is present in any material, but in most
cases it is very small. To study the influence of FR on CB
and in order to considerably influence CB, the product
of the three parameters 2V B`? must be on order unity.

Fig. 11. Experimental setup to measure the CB cone at high
magnetic fields. The sample (S) (diameter ≈ 13 mm, thick-
ness ≈ 5 mm) was placed in an optical cryostat at temper-
atures down to 30 K. It was rotated to average over many
speckle patterns. The cryostat window of the sample cham-
ber was mounted on a very thin steel tube in order to reduce
birefringence. The cryostat was inserted into the magnet hole
which had a diameter of 50 mm (magnetic field parallel to
the hole). Laser: linear polarized Ar+-Laser at 457.9 nm. A
beam expander (BE) is used to enlarge the laser beam to about
1 cm and to minimize the divergence of the beam. The semi-
transparent mirror is wedge-shaped (diameter = 50 mm). The
lens (L) had focal lengths between 250 mm and 500 mm. The
analyzer (A) was composed of a λ/4-plate and a linear polarizer
(Polaroid foil) and the polarizer (P) included a Babinet-Soleil
compensator such that any incident and detected polarization
state could be chosen. In particular we could compensate for
the depolarization by mirrors, windows etc. The CCD camera
had a resolution of 512 × 512 pixel of 1 byte. With the PC
we averaged over 255 angle resolving pictures. The distance
between sample and mirror measured about 0.5 m.

The experiments were carried out at the High Magnetic
Field Laboratory, Grenoble, in a resistive magnet with
a magnetic field B up to 23 teslas. The samples which
were used, were essentially fabricated of a Faraday ro-
tating glass powder with a Verdet constant V of about
90◦/mm/tesla at 30 K. To produce a significant effect un-
der these conditions the third parameter `? must be ap-
prox. 50 µm or, in other words, the width of the cone must
be in the order of 2V Bλ/2π ≈ 0.1◦. In our case, depend-
ing on the sample, the transport mean free path `? varied
from about 10 µm to 300 µm.

4.1 Experimental setup

Figure 11 shows our experimental setup to measure the CB
cone in the presence of a high magnetic field. The mea-
sured values of the CB enhancement were always below
1.8 which can be explained by the extreme experimental
conditions, e.g. an optical cryostat was necessary in order
to perform the measurements at low temperatures. This
way we achieved a resolution of about 5 × 10−5 radian
which was not quite sufficient to resolve the very peak of
the cone. We tested the stability of the cone against ex-
perimental artifacts with samples such as Teflon, which
have a very low FR. For circular polarization the fluctu-
ations of the CB enhancement were less than 3%. In the
case of linear polarization we had to compensate for the
FR in the windows of the cryostat but the error was still
less than 5%. Unfortunately, with this experimental setup,
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Fig. 12. Solid lines: CB cone ‘++’ for different magnetic field
values. Same sample as in Figure 1; temperature 30 K. The
curves were obtained by averaging the pictures from the CCD
camera in the azimuthal angle of qb around the maximum of
the cone. Dots: curves which were obtained after rescaling the
curve at 0 tesla by q2

b → q2
b + q2

FR, where qFR is given by the
value at qb = 0.

it was not possible to measure the case where the magnetic
field is perpendicular to the incident light.

4.2 Samples

We used a paramagnetic glass as a basic material [29],
containing about thirty weight per cent of Tb3+-ions. It
has a paramagnetic FR of −9.25◦/mm/tesla at room tem-
perature and −81◦/mm/tesla at 30 K using a wavelength
of λ = 457.9 nm. Its Verdet constant is magnetic field
dependent and tends to a saturation rotation of about
−820◦/mm. The index of refraction is n = 1.7. We ground
this glass and obtained a white powder of particles with
very irregular shapes and sizes between 1 µm and 50 µm.
The powder alone has a volume fraction of about 64% of
FR material and a transport mean free path `? of about
40 µm. In order to increase `? and/or to obtain solid sam-
ples we mixed this powder with paraffin, or melted (sin-
tered) the glass powder. The molten samples consisted of
about 90% FR material and 10% air cavities in between,
and were quite transparent. Therefore, we added one to
five volume per cent of non-melting colloidal particles of
SiO2 or TiO2. Finally, we obtained white samples with
values of `? between 20 and 100 µm. These values were
obtained by comparison with Monte Carlo simulations of
the cone. For all samples the CB cones in the opposite
polarization channels were very small, i.e. in the order of
1% and there was no significant difference between E

++

CB
and ExxCB. This means that the depolarization lengths are
relatively small, which is not astonishing, as the samples
mainly consisted of (sintered) glass particles.
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Fig. 13. Marks (+,©,4): experimental curves of ECB as
a function of qb at zero field and as a function of V B in
the exact backscattering direction. Lines: simulated curves for
`? = 48 µm and a size parameter ka = 1.8, i.e. `?/` = 2.1
and `?FR/`

? = 1.145. Sample: molten glass powder mixed with
2% SiO2 (a = 127 nm); temperature 30 K, circular polarized
light. The rescaled curve ‘4’ (with respect to ‘+’) demonstrates
the equivalence of qb and qFR in equation (13) for small argu-
ments. Due to the limited angular resolution of our experimen-
tal setup, the peak of the cone is rounded off. Compared to this,
the rounding off by absorption is negligible. In our simulations
we took into account this effect, as well as the influence of the
internal reflections (n = 1.6) at the surface of the sample.

4.3 Experimental results

Figure 12 shows an example of how FR decreases CB. For
small values of V B`? the shape of the cone can be de-
scribed by the substitution q2

b → q2
b + q2

FR with q2
FR =

`?/`?FR(2V B`?FR)2. For larger arguments of qb and V B`?,
the measured curves decrease a little quicker than ex-
pected by this substitution. This behavior was also found
in the simulations (see Fig. 4). The value `?FR/`

? can be
estimated by comparing the decays of C(qb)V B=0 and
C(V B)qb=0 for minor arguments (see Fig. 13). For the ten
different samples we have studied we find values between
0.6 and 1.6. The lowest value of 0.6 was found in a sample
where the glass powder was mixed with paraffin. This sam-
ple must depolarize the light very quickly so that `p,c is
smaller than `?. The greatest value was found in a sintered
sample which contained 0.1% of scatterers of TiO2 (radius
130 nm).

We also compared the experimental data with simu-
lations. Of course, the scattering in our samples does not
correspond to pure Mie or Rayleigh-Gans-Debye scatter-
ing. However, the shape of the cone is mainly determined
by the ratio `?/` which can be the same for different kinds
of scatterers. Figure 13 shows a comparison between ex-
periment and simulation for a sample of molten glass pow-
der, containing colloidal particles of SiO2. The curvatures
of the simulated curve EV B=0

CB (qb) and essentially of the
curveEqb=0

CB (V B) give the size parameter ka. Finally, both
curves were rescaled in qb and V B by the same factor,
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Fig. 14. Solid lines: CB cone for different magnetic field val-
ues. Same sample as in Figure 13. Dots: simulated curves us-
ing the fit parameters of Figure 13. The experimental curves
were rescaled by a factor (same factor for all curves), in such a
manner that the peak of the cone at zero field goes up to the
theoretical value. This value is slightly less than two, due to
the convolution of the simulated curves with the resolution of
the experimental setup.

which gives `?. After adjusting these two fit parameters,
the coincidence between experiment and simulation is very
good. Finally, we simulated with the obtained parameters
the whole shape of the cone in presence of FR (see Fig. 14).
Again, the agreement is very good.

We also measured the rotation of the linear polariza-
tion of the cone in the case ‘xx’. In our experiments we
could not detect a different rotation of the polarization
for the multiple scattered and single plus multiple scat-
tered part of the light, rather only one common shift. For
all ten samples the rotation corresponded to a ballistic
penetration length of the order of `?FR, e.g. in the case of
Figure 13 we find a ballistic length of 45 µm, which is equal
to 0.94`? or 0.82`?FR. The simulations for those parameters
give a ballistic length of 1.02`?.

Apart from this rotation of the polarization we could
not find any significant difference between linear and cir-
cular polarization in our experiments. In the opposite
channels ‘±’ and ‘xy’, the cones were very small and, if
existent at all, unchanged by FR.

5 Conclusion

We have developed a path model of light which well ex-
plains the influence of FR on CB. CB is the direct conse-
quence of the theorem of reciprocity and FR is the only
effect (for elastic scattering) which is able to violate reci-
procity. However, FR does not necessarily destroy CB.
The light needs also to be depolarized. This correlation
between CB, FR and the depolarization of light is well

displayed in our model. It turns out that a new charac-
teristic correlation length `?FR appears which, for example
in the case of Rayleigh scattering, is twice the length of
`?. Experimentally, an increased FR effect was also found
in speckle correlation measurements including FR [12,30],
where it was explained by internal reflections inside the
scatterers or by resonant scattering. However, this expla-
nation cannot hold for our kind of samples, where FR is in
the bulk material which has a volume fraction of ≈ 90%.

Due to the boundary conditions in backscattering ge-
ometry, quantitative predictions are very difficult and no
longer possible with our model. Therefore, and in order
to verify the (qualitative) predictions of our model, we
made computer simulations of Monte-Carlo type. These
simulations make visible the predicted effects such as the
fact that in samples where the circular depolarization is
relatively small, CB is not completely destroyed, but the
shape of the cone may be changed. Besides, we studied
the rotation of the linear polarization of the cone, due to
the first and last ‘ballistic’ step of the light in the sample.
This effect can be interesting to study the influence of a
boundary on multiple scattering.

We succeeded, in our experiments, in fabricating sam-
ples were FR decreases CB considerably. In order to com-
pare the measurements with the simulations, experimental
parameters and artifacts such as a limited resolution or in-
ternal reflections at the sample surface need to be taken
into consideration. In fact, in our case, internal reflections
decrease the cone width by about a factor of two. Finally,
via these simulations, which matched well with our exper-
iments, we could also verify our model experimentally, at
least in the case where the magnetic field is parallel to the
incident light.

We hope we succeeded in showing that the study of the
influence of FR on CB is an interesting, useful and pow-
erful tool for the characterization, as well as the under-
standing of the propagation of light in multiple scattering
samples.

We want to thank Frank Erbacher, Alex Martinez, Anne
Heiderich, Bart van Tiggelen and Roger Maynard for fruitful
discussions as well as Jan Dhont for the supply of the col-
loidal glass particles. The experiments had been carried out
at the High Magnetic Field Laboratory, Max-Planck Institut
für Festkörperforschung and Centre National de la Recherche
Scientifique, Grenoble (France).

Appendix: Influence of FR on the scattering

In this work we only considered the influence of FR on the
coherent part of the waves, i.e. the light which is propagat-
ing between two scattering events. Of course, according to
the change of the index of refraction by FR, the scatter-
ing itself is also influenced: the differential cross section
dσ/dΩ changes and becomes asymmetric [31]; even an
optical analogue to the Hall effect was reported [32,33].
However, as the change of the index of refraction is very
small (∆n = V Bλ/2π . 10−3), these effects are negligible
in our experiments. In a simple estimation, i.e. by calcu-
lating the total cross section σ± for circular right and left
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polarized light respectively, in a sample with the refractive
indexes n± = n±∆n, we find that the relative change of
the scattering mean free path ` is about 10−5.

There are two other magneto-optical effects. One is
magnetic dichroism which decreases CB as it absorbs cir-
cular polarized waves differently, depending on whether
they are propagating parallel or antiparallel to a magnetic
field. Magnetic dichroism can be described like a FR with
a complex angle iδa

2 (B · r) times an attenuation factor
exp(−ar/2), corresponding to the absorption coefficient
for the circular right and left polarized intensity given by
a ± δa(B · r). This results in essentially the same equa-
tions (25–28), but with another C++ = (x/arctanh[x])n,
where x = B`?FRδa/(1 + a`?FR). However, in our samples,
absorption and magnetic dichroism are negligible.

The other magneto-optical effect is the Voigt effect
which is the analogue to the Cotton-Mouton effect in
liquids. Due to the magnetic field the material becomes
birefringent. For our bulk material we measured a phase
shift of −0.038◦/mm/tesla2 at room temperature and
λ = 457.9 nm, i.e. at low magnetic fields the Voigt effect
is two orders of magnitude smaller than FR. For higher
magnetic fields the Voigt effect becomes more important
because of its B2 dependence. But the Voigt effect also sat-
urates in paramagnetic materials. In a classical spin model
we estimated the saturation phase shift to −515◦/mm.
Quite apart from that, the Voigt effect does not influence
the enhancement factor of CB (it may only effect the shape
of the cone) as birefringence does not violate the theorem
of reciprocity.

Finally, we have also studied whether the scattering
changes the FR of the bulk material. For that, we have
measured the FR of the coherent, i.e. non-scattered wave
in transmission through thin slights of our samples. As
expected, we found that the FR just corresponded to the
volume fraction of the FR material in the samples.
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