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Abstract Long- and infinite range correlations C2 and C3 in the optical speckle pattern
represent one of the most interesting phenomena in multiple scattering of light.
Despite the strong scattering these correlations survive the averaging process of
light diffusion and are even enhanced with increased randomness. In this article
we are going to discuss the microscopic origin of these particular correlations
which are explained in the simple picture of one and twofold crossing of multiple
scattering paths. We present a comprehensive experimental study of dynamic
speckle correlations,C2(t) andC3(t), where the phase shift between the multiple
scattering paths is caused by the Brownian motion of the scattering particles. The
shape and amplitude of the correlation functions C2(t) and C3(t) are in good
overall agreement with theory. Deviations are found in the case of C2(t) when
correlations are generated close to the incoming surface which can be explained
by single scattering contributions.
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1. INTRODUCTION

Light propagation in random media has attracted considerable attention over
the last decade. In analogy to electronic transport in disordered metals, funda-
mental issues such as localization of light have been addressed [1, 2]. It has
been found that despite the randomness of the medium, various interference
effects are essential for the light propagation in the multiple scattering regime.
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Since the discovery of weak localization of light [3, 4], a precursor of light lo-
calization, a much deeper understanding on wave propagation in random media
has been achieved [5, 6, 7]. Most recently much attention has been paid to the
reported observation of strong localization of light, which has been discussed
controversially [8, 9, 10].

Another most interesting phenomenon in multiple scattering of classical
waves is the appearance of correlations and fluctuations in the transmission
speckle pattern. In this article we discuss recent experimental results about these
correlations in the dynamic speckle pattern of laser light transmitted through
a turbid colloidal suspension. Due to particular interference effects caused by
crossing of scattering paths inside the random medium, two types of correlations
between different speckle spots build up [11, 12, 13, 14, 15, 16, 17, 18, 19]. (1)
Long range correlations in the scattered fields give rise to fluctuations in the an-
gular integrated transmission. (2) Infinite range correlations cause fluctuations
in the total transmission, independent both of the incoming and transmitted wave
mode. The latter fluctuations are considered the optical analogue of ”universal
conductance fluctuations (UCF)” in electronic systems [13, 20].

After a brief review of the physical origin and theory, we discuss the tem-
poral shape of the correlation function C2(t) and its amplitude dependence on
sample thickness, beam spot size, and transport mean free path l�. Universal
conductance fluctuations of light will be the subject of the final part of this
article.

The experiments show that due to of the inherently small noise level in
dynamic light scattering experiments, photon correlation spectroscopy provides
access to an unprecedented accuracy in the study of optical speckle correlation
phenomena.

2. THEORY

2.1 THE PHYSICAL PICTURE

Both classical and electronic conductance fluctuations can be described in an
appealing simple physical picture (Fig. 1.1) as further outlined below [13, 18,
19]. (C1) : Interferences between waves scattered along independent paths give
rise to short range angular fluctuations, in optics known as speckles. These are
due to non-intersecting scattering paths which give rise to short range temporal
and angular speckle fluctuations because of scatterers motion. There are no
correlations between fields scattered along different paths. (C2) : One crossing
of scattering paths builds up correlations between different paths. Temporal
decorrelation like in (C1) occurs along the active section of the paths located
before the crossing event, while after the crossing the fields remain totally
correlated (no mutual phase shifts) at all t and all output directions (b; b0).
(C3) : Twofold crossings generate universal conductance fluctuations (UCF).
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Figure 1.1 The physical origin of speckle correlations can be explained in an appealing simple
physical picture of independent (C1) and crossing light paths (C2 and C3 ). One crossing of
paths generates correlations of all output speckle spots (C2) while two crossings cause UCF
(C3). (—) wave fields at correlation time t = 0, (- - - ) phase shifted wave fields at t > 0
scattered along the same sequence of scatterers.

t-dependent phase shifts occur only between the crossing events, the intensity
fluctuations are therefore insensitive to input (a; a0) and output (b; b0) wave
modes.

2.2 LONG AND INFINITE RANGE CORRELATIONS

The cylindrical waveguide. The most simple case from a theoretical point
of view is the diffuse transmission of classical waves through a cylindrical
waveguide with perfectly reflecting walls (length L, width D). The average
intensity, which is transmitted from an incoming plane light wave mode a to an
outgoing plane wave mode b; is called hTabi : The (dimensionless) conductance
g of the sample is then defined as the sum over all incoming and outgoing
modes:

g �
X
a;b

hTabi = Nl�

L
� D2 (1.1)

N is the number of modes inside the waveguide of length L. N is proportional
to D2 and thus g is proportional to the surface area of the sample.

Feng et. al. found that the intensity autocorrelation function C(x) =
hI(0)I(x)i2 = hI(0)i2 � 1 can be written in terms of three leading contribu-
tions C1(x), C2(x) and C3(x), x being some quantity, such as frequency shift
�! or correlation time t, which introduces phase shifts between optical fields
[11, 13]:

C(x) = C1(x) + C2(x) + C3(x) (1.2)

The amplitude of the different contributions was found to scale with

C1(0) ' 1; C2(0) ' g�1; C3 ' g�2 (1.3)

In this respect 1=g also describes the probability that two paths cross some-
where inside the sample [13]. Here C2 = C2(0) and C3 = C3(0) are indepen-
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dent of the functional behavior of C2 (x) and C3 (x), i.e. they are independent
of the nature of x.

Slab geometry. In practice it is difficult to realize a small optical waveguide
for diffuse light propagation with perfectly reflecting walls. Therefore already
Feng et. al. suggested to investigate the transmission through a slab instead
[11]. Pnini and Shapiro extended the theory of Feng to the general case of a
finite beam spot incident on a slab [12]. They calculated the amplitude C2 for
a homogeneous beam spot of size W , with I(r) = 1 for 0 � r < W=2 and
I(r) = 0 otherwise. The result for W � L is the same as for a cylindrical
waveguide while for the case W << L they find that the amplitude scales
linearly with the inverse beam spot size 1=W [21]:

C2 =
4

k20W
2

L

l�
; W � L (1.4)

C2 =
3

2k20Wl�
; W � L (1.5)

Later de Boer et. al. generalized this result for an incident gaussian beam,
beamspot size w, usually encountered in optical experiments [22]. Although
they considered frequency correlations C(�!) their results for the amplitude
C2 apply to the case of temporal correlations as well because of the insensitivity
of C2 on the phase shift introducing parameter:

C2 =
1

�
� L

w2
� F

�w
L

�
(1.6)

� =
k20l

�

3
=

l�

3

�
2�n

�

�2

(1.7)

F
�w
L

�
=

Z
1

0
dx
�w
L

�2
exp

2
4��w

L

�2 x2
32

x
�
sinh(x)

x � 1
�

8 (cosh(x)� 1)

3
5 (1.8)

where n is the refractive index, and � is the wavelength of the incident light. In
the limit w >> L, F (1) �! 2=3; hence C2 � w�2:

2.3 SHAPE OF THE CORRELATION FUNCTION

Diffusing wave spectroscopy. Light transmission through a slab contain-
ing Brownian particles shows strong fluctuations in the transmission speckle
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pattern. The fluctuations of the individual speckle spots are determined by
the autocorrelation of electromagnetic fields scattered along individual paths,
where the phase shift along a single path is, on average, directly proportional
to the length of the path. For this case the leading contribution to the intensity-
intensity correlation function hI(0)I(t)i = hI(0)i2 � 1 ' C1(t) can be derived
from diffusion theory [23]. Assuming light propagation on independent scat-
tering paths (Fig. 1.1), it is possible to calculate the actual distribution of light
paths and therefore calculate C1(t) :

C1 (t; L) �= exp

 
�2
�
L

l�

�2 t

�0

!
(1.9)

It was shown experimentally that this relation holds very well for samples of
thickness L larger than 10 transport mean free paths l� [24]. Here �0 = 1=Dk20
denotes the single scattering decay time and D0 the translational diffusion con-
stant of the scatterers. The correlation function is dominated by a typical path
lengthL2/l� of the diffusing light where each scattering event contributes on av-
erage by exp(�t=�0) to the decay of the correlation function. Measurements of
C1(t) are widely exploited as the so called diffusing wave spectroscopy (DWS),
which has become a powerful tool to study dynamics of colloids, emulsions,
and other turbid soft matter [23, 25, 26]

Long range correlations. Unlike the amplitude C2, the dynamical part of
the long range correlations C2(�!) cannot be directly transferred to the time
domain C2(t). To our knowledge the only theoretical treatment of long range
C2(t) correlations for Brownian scatterers is presented in a paper by Berkovits
and Feng [14]. Using a diagrammatic technique they derive the intensity-
intensity correlation function for the case w >> L and find:

C2(t) =
3C2

2
q

6 t
t0

2
4coth�r6

t

t0

�
�

q
6 t
t0

sinh2
�q

6 t
t0

�
3
5 (1.10)

t0 �
�
l�

L

�2

�0 (1.11)

The C2(t) correlation function decays over a much broader time scale than
in the case of short range C1(t) correlations. In the long time limit an algebraic
t�1=2 behavior is predicted.
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Figure 1.2 Broadening of the photon cloud for the slab geometry. The increasing width w(z)
leads to a sharp decline of the ”crossing probability” C2(z) with increasing depth z. If the beam
spot sizew << L, crossing events close to the incoming surface have a much higher weight and
dominate C2 and the temporal shape of the correlation function since the effective path lengths
before a crossing event are much shorter as compared to a cylindrical waveguide of identical
thickness L. With increasing beam spot size w the decay of the crossing probability becomes
less sharp until in the case w >> L it is independent of the depth z.

2.4 THE INTEGRAL APPROXIMATION

Most of the theoretical results described above are derived from diagram-
matic calculations which are quite complicated and physically not always very
instructive. Most of these calculations are restricted to ideal cases, like the
cylindrical waveguide. Often however the theoretical assumptions do not match
the experimental conditions, e.g. the sample geometry or the influence of the
boundary. How these deviations influence the amplitude and the decay of C(t)
cannot be easily derived from standard theory without doing the whole calcu-
lation from scratch. On the other side we have seen that the physics of long
and infinite range correlations can be understood within the simple picture of
crossing light paths [section 2.1], where the crossing probability is of the order
C2 � 1=g. While in the cylindrical waveguide the crossing probability is the
same throughout the sample this is not true for other geometries. Fig. 1.2
shows the conically shaped photon cloud in the case of a slab geometry. Here
the crossing probability decreases with increasing depth z. Based on the simple
picture of crossing light paths and the exact result for a cylindrical waveguide
we have derived an approximate theory which can easily be adapted to the ex-
perimental conditions [27, 28]. As a starting point we consider the sample as
a succession of Q thin slabs i of thickness d [Q � d = L]. The thickness of
the slabs is chosen such that d is much smaller than the lateral extension w(z)
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Figure 1.3 Comparison of the shape of the correlation functions C1(t), C2(t) and C3(t) for
(L=l�) = 20; �0 = 2ms. The correlated contributions C2(t) and C3(t), Eq. (1.16), decay
slower and over a much broader time range than C1(t): A comparison of the diagrammatic
results for C2(t) [Eq. (1.10), solid line] and the result obtained from the integral approximation
[Eq. (1.15), open symbols] shows excellent agreement.

of the photon cloud at a depth z inside the sample, hence w(z) � d. Each
single slab can therefore be treated as a cylindrical waveguide with a crossing
probability inside the slab i [Eq. (1.4)]:

Ci
2 _

d

w(z)2
(1.12)

From this we find for the amplitude:

C2 '
QX
i=1

Ci
2
d!0�! 1

L

LZ
0

C2(z) dz (1.13)

It is straightforward to extend this expression to describe the decay of the
correlation function as well. Contributions to C2 which are due to a crossing of
paths in a depth z exhibit dephasing before the crossing event and are correlated
afterwards. The path length distribution in this case is well approximated by
the path length distribution of the uncorrelated function C1(t; z) [Eq. (1.9)]:
We can therefore write:

C2(t) =
1

L

LZ
0

C2(z) � C1(t; z) dz (1.14)
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In the particular case of C2(z) = const: (cylindrical waveguide) we find the
simple result:

C2(t) = C2
1

L

LZ
0

C1(t; z) dz (1.15)

If we compare this result with the exact result Eq. (1.10) from diagrammatic
calculations, excellent agreement is found (Fig. 1.3). This demonstrates the
consistency of our approach based on the simple physical picture described
above. Eq. (1.14) represents a complete description of long range speckle
correlations C2(t) for a known distribution of w(z).

The same approach can be used to determine the correlation function C3(t)
[29]: The active path sections contributing to C3(t) are located between two
crossing events (Fig. 1.1) resulting in a further broadening and slowing down
compared to C2(t): In the integral approximation the correlation function for
a waveguide geometry is given by a double integral over C1(t; z) or a single
integral over C2(t; z) :

C3(t) =
C3

L

LZ
0

C2(t; z)=C2 dz (1.16)

3. DYNAMIC LONG RANGE CORRELATIONS

3.1 EXPERIMENT

Dynamic long range correlations have been studied by angular averaging of
light transmitted through a slab containing a turbid colloidal suspension. The
colloidal suspensions were prepared from monodisperse BaTiO3 suspended in
water [30]. Values of l� where determined independently by static transmis-
sion measurement [24]. A minimal value of l� = 0:98�m was found at a
volume fraction � = 27%. The fluctuations of the integrated transmission
were measured with the setup illustrated in Fig. 1.4.

A gaussian laser beam (diameter roughly 1mm) from an Ar-laser operating
in single frequency mode at 457.9 nm was focused onto a sample cell of variable
thickness yielding a transverse intensity profile at the sample surface :

I(r) =
2

w2
p
�
exp

�
�4r2

w2

�
(1.17)

The beam waist w is defined by the distance between the 1/e points of the
transverse intensity distribution. To obtain small beam spot sizes, we used
either an optical lens of a focal length of 5cm, which yields a minimum beam
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Figure 1.4 Experimental setup: The fluctuations of the integrated transmission through a slab
were measured by angular averaging the transmitted light with an integrating sphere (IS). De-
tected by a photomultiplier unit (PM) the correlation function was subsequently analyzed using
a digital correlator [18]. The incident laser beam is strongly focused by a lens.

spot size of w = 11:6�m; or in one case a microscope objective to obtain beam
spots down to w = 3:4�m. This setup allowed us to change the actual beam
spot size by variation of the sample-lens distance. The size of the beam spot w
was determined by replacing the sample by a 10�m pinhole, or a 1�m pinhole in
the latter case, and scanning across the beam (accuracy ca. 5%). The glass cell
was mounted in a sample holder and placed into an integrating sphere in order
to average scattering intensities over all scattering angles of the transmitted
light. A thick fiber bundle (diameter 5mm); positioned perpendicular to the
incoming beam, was used to conduct the transmitted light from the integrating
sphere to a photomultiplier. The fluctuations of the integrated transmission were
analyzed using a commercial photon correlation setup . The detection limit for
the intensity correlation function was determined to be lower than 10�6 over the
whole range of correlation times 4� 10�7s < � < 10�5s considered. Details
of the experimental setup can be found in [18].

Fig. 1.5 shows the intensity-intensity correlation functions for three different
beam spot sizes, with l� = 0:98�m. The maximum signal observed for this film
thickness L = 19:6�m is of the order of hI(0)I(0)i = hI(0)i2 � 1 � 2� 10�4

corresponding to a conductance of g � 5000.

3.2 INFLUENCE OF THE BOUNDARY LAYER

We first want to explore the limits ofw � l�;where an increased influence of
the light propagating in a layer near the sample surface is expected. In the case
of C2 correlations, crossing of light paths near the incoming surface results in
short ”active” scattering paths, after which no further dephasing occurs. These
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Figure 1.5 Dynamic long range correlation functionC2(t) for a slab of thicknessL = 19:6�m
[l� = 0:98�m]: The amplitudeC2 increases with decreasing beam spot size w. The solid lines
are calculated within the integral approximation, Eq. (1.22), with no adjustable parameter
(z0 = l�).

short active paths are responsible for the long time tail of the correlation function
C2(t) [see also section 3.4].

A significant influence of this boundary layer on the amplitudeC2 is expected
when the beam size w is of the order of the transport mean free path l�; which
is the length scale over which the incident light is randomized. Fig. 1.6 shows
the dependence of C�12 on w for thick films (L = 90 � 10�m) of colloidal
suspensions of different l�: The concentration � of the suspensions is in all
cases 11% or lower, therefore the refractive index n ' nwater ' const: In this
range, i.e. w=L < 0:2; C�12 scales in good approximation linearly with w :

C�12 ' 8�

5
w (1.18)

Eq. (1.18) can be derived by expanding Eq. (1.6) in the limit w=L ! 0.
C�12 _ w follows also directly from the integral approximation [Eq. (1.13)]
assuming diffuse linear spreading of the photon cloud inside the slab w(z) '
w(0) + �z with � of order 1 [18].

In the experiments (Fig. 1.6) we clearly observe the linear dependence of
C�12 onw, howeverC�12 does not tend to zero for small values ofw; but reaches
a well defined minimum value (1=C2)min. Apparently, the light incident on the
slab does not contribute to the long range correlations before it is scattered at
least once inside a surface layer, hence broadening the beam spot [18]. This
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Figure 1.6 Measurements of C2 vs. the beam spot size w show that C�1

2
values extrapolated

for w ! 0 are non-zero and a distinct function of the transport mean free path l�. A minimum
beam spot size, wmin = 2:4l�; can be defined by extrapolation of C�1

2
(w)! 0 (dotted lines).

The thickness of the films (L = 90� 10�m) is in all cases much larger than the beam spot size
w.

result suggests that in fact the photon intensity distribution is broadened by
scattering in a surface layer of thickness (1 � 2)l�. We can account for this
surface scattering by introducing an effective beam spot size:

weff = (wmin + w) = 2:4l� + w (1.19)

We note that this value is somewhat larger than one would expect from
single scattering contributions and also larger then the value determined from
the shape of the correlation function (see section 3.4 ). Recent calculations
suggest that finite size effects may account for this discrepancy since they lead
to an increase of C�12 [31]. In the case w=L ! 0 the effective length Leff of
the sample (where the correlations are built up) is of the order Leff � w which
means Leff is comparable to l� for small beamspot sizes w:

3.3 AMPLITUDE SCALING OF C2

According to Eq. (1.6) the product C2 � L should depend solely on the
ratio of the beam spot size and sample thickness w/L; independently of the
actual values of w and L. For this reason, the measured values of (C2L)�1 are
predicted to follow a master curve. We expect the rescaled amplitude (C2L)

�1

to increases linearly with w=L for w << L, whereas for large ratios w=L >>
1 the quadratic dependence should be recovered: (C2L)

�1 � (w=L)2: The
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Figure 1.7 Scaling dependence of (C2L)
�1 on the reduced beam spot size weff=L. The

measured values for four different film thicknesses L = 8, 19.6, 36.7, 40.2 �m follow a master
curve [Eq. (1.6), solid line] with � = 149 � 15 the only adjustable parameter. The integral
approximation yields fairly good agreement with the same set of parameters [Eq. (1.21), dotted
line].

amplitude C2 for films of different thicknesses (L = 8; 19:6; 36:7; 40:2�m)
and effective beam spot sizes from 14 to about 60�m was determined for a
single minimum transport mean free path of l� = 0:98�m: Over the explored
range of weff=L; the values (C2L)

�1 are found to be in good agreement with
the scaling prediction Eq. (1.6) (Fig. 1.7) with only one adjustable parameter
� = 149 � 15 [1=�m]: This value is in quantitative agreement with theory,
� = 138� 27 [1=�m]; and static measurements in the frequency domain [22].

Fairly good agreement with the same set of parameters is also obtained from
Eq. (1.13) with the approximate intensity distribution w(z) ' weff +�z; � =
16=15 [27, 32]:

C2(z) =
2

3�

1

w(z)2
(1.20)

C2L '
LZ
0

C2(z) dz =
2

3�

1

[(weff=L)2 + �(weff=L)]
(1.21)

Another feature is illustrated in Fig. 1.8. For L=weff >> 1 the magnitude
of the C2 correlations becomes independent of L. This is due to the broadening
of the beam inside the sample (Fig. 1.2). If L is much larger than weff , the
width of the photon cloud deep inside the sample becomes so large, that the



Dynamic speckle correlations 13

Figure 1.8 Dependence of C2 on the slab thickness L. The values for three different beam
spot sizes weff = 14; 20; 34:5�m are plotted with the corresponding theoretical lines, Eq.
(1.6), using � = 149 [1=�m]. The dotted line shows the result for a corresponding cylindrical
waveguide with D = 14�m [Eq. (1.4)].

crossing probability is very small in most of the sample except the region of
thickness of order Leff � weff near to the entrance surface. Increasing the
thickness yields only asymptotically small increases in C2 (Fig. 1.8).

Localization of light. Since 1=g ' C2 we find that for a slab geometry (by
increasing L and decreasing w ) the value of the dimensionless conductance g
cannot be reduced below a certain value gmin : In fact the maximum amplitude
C2 or the minimal g is determined by the transport mean free path [Eq. (1.18),
Eq. (1.19)]: gmin ' (8=5) � (2:4l�) = 1:3 (k0l

�)2 [18].
The dimensionless conductance g is also an important quantity with respect to

the transition from diffusion to localization of light. For a waveguide geometry
g < 1 implies a localization transition while the role of g for the localization
transition in a slab geometry is still under discussion.

From our experiments we extrapolate that g < 1 can be achieved at kl� � 1,
a value that is of the same order as the Ioffe-Regel criterion for the localization
transition: kl� � 1 [33]. However for optical wavelengths k � 15=�m (�=n �
400nm) this is only realized for (unphysically) small beamspot sizes w � l� �
1=k0 � 70 nm [27].

Scaling with l
�. We were able to confirm the predicted linear dependence of

C�12 / � on the transport mean free path l� [Eq. (1.6)]: Fig. 1.9 shows the
values of � determined from the slope of the (C2(w))

�1-curves (Fig. 1.6). A



14

Figure 1.9 The values of � show the expected linear dependence on l�. The � values are
determined from the slope of measured C�1

2
(w) curves (Fig. 1.6).

linear fit yields �=n2 = (71� 9) � l� , compared to �=n2 = 63 � l� from theory
[Eq. (1.7)].

3.4 SHAPE OF THE CORRELATION FUNCTION

Finally we want to discuss the time dependence of the correlation function
C2(t): Crossing of light paths can occur at any point inside the sample, its prob-
ability being determined only by the effective lateral extension of the photon
cloud. In the case of a cylindrical wave the crossing probability is independent
of the depth z which leads to Eq. (1.15), or equivalently Eq. (1.10). C2(t)
therefore decays much slower and broader than C1(t): The semi-logarithmic
plots in Fig. 1.3 and Fig. 1.10 clearly reveal this behavior.

For a complete description for any combination of w and L we use again the
integral approximation for the correlation function C2(t) [Eq. (1.14)]. Using
Eq. (1.21) with w(z) ' weff + �z; � = 16=15 we find [27, 32]:

C2(t) =
C2

L

LZ
z0

2

3�

1

w(z)2
� exp

�
�2
� z
l�

�2 t

�0

�
dz (1.22)

For the cylindrical waveguide limit, weff � L and z0 = 0; Eq. (1.22)
reduces to Eq. (1.15) (see also Fig. 1.3). We furthermore introduced a lower
bound z0 for the integral which can be non-zero. This allows us to take into
account single scattering contributions close to the boundary. In fact for long
correlation times C2(t) does not show the expected algebraic decay t�1=2 but
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Figure 1.10 Normalized correlation function C2(t) for w > L [L = 19:6�m; w = 32�m].
A numerical fit with Eq. (1.10), dashed line, yields good overall agreement with L = 19:4�m
in agreement with L = 19:6�m determined from measurements of C1(t): For long correlation
times deviations from the predicted t�1=2 behavior show up. We find perfect agreement (solid
line) when introducing a lower bound z0 = 1:3l�; in the integral approximation, Eq. (1.22).
Inset: log-log plot of the same data set.

decays much faster [18]. The suggested explanation is that before a crossing
of two light paths can take place there has to be at least one single scattering
event close to the surface. This sets a lower bound to the minimum ”active”
path length. We take account for this by setting z0 ' l�: In Fig. 1.5 and Fig.
1.10 it is shown that Eq. (1.22) perfectly describes the experiments over the
whole range of correlation times both in the limit w� L and w � L: The good
agreement for longer correlation times gives further evidence for the suggested
single scattering contributions.

4. UNIVERSAL CONDUCTANCE FLUCTUATIONS
OF LIGHT

4.1 THE EXPERIMENTAL REALIZATION

The setup to measure C3(t), the optical analog of universal conductance
fluctuations in disordered metals [13], is schematically displayed in Fig. 1.11.
It was designed in analogy to a mesoscopic wire in two lead configuration.The
prelayer of variable thickness L1 enables the separation of C2(t) and C3(t)
in the time domain. The active path sections of C2(t) are located before the
(single) crossing events which occur almost exclusively within the pinhole. A
sufficiently thick prelayer L1 therefore leads to a rapid decay of C2(t) very
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Figure 1.11 Sketch of the experimental setup. A small cylindrical pinhole (diameter D, length
L) sandwiched between two layersL1 andL2 is filled with a turbid colloidal suspension. Photon
paths which cross twice inside the pinhole give rise to UCF.

similar to C1(t) for L1 � L, as can be seen when replacing the integration
limits in Eq. (1.15) by [L1; L1 + L]:

C 02(t) ' C 02
1

L

L1+LZ
L1

C1(t; z)dz (1.23)

' C 02 exp[�2
�
L1

l�

�2 t

�0
];L1 � L

To distinguish it from the broad and slow decay of C2(t) we call this rapidly
decaying function C02(t) ' C1(t; L1). On the other hand, according to Eq.
(1.16), C3(t) is expected to show an algebraic decay independent of the thick-
ness of both layers L1 and L2 since the two crossing events occur essentially
only within the pinhole. Physically the colloidal prelayer scrambles the incom-
ing modes very rapidly thereby creating an effective multi-mode illumination
of the pinhole on the time scales of interest for C3(t):
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4.2 SETUP

Samples were prepared from commercial colloidal TiO2 suspended in water.
After stabilization with polyacrylic acid and filtering the suspension was found
fairly monodisperse with an average particle diameter of d ' 290 nm, deter-
mined by single scattering photon correlation spectroscopy. Concentration was
about 7 % by volume. Using a cell of known thickness (L=100�m) we find
from DWS in transmission [Eq. (1.9)] l� = 1:35 � 0:1�m; (�0 ' 3ms).

A cylindrical pinhole (laser drilled in a disc shaped stainless steel foil of
thickness L = 13�m) was embedded in the suspension providing a liquid
reservoir on both sides of the sample. The thickness of both layers L1;L2

sealed by glass windows was varied using different spacers. The sample was
illuminated with a laser beam (� = 514:5 nm) focused down to 150 � 200�m
beam diameter at intensities < 100 mW. We performed measurements of the
autocorrelation function of the angular integrated transmitted intensity collected
with a thick multi-mode fiber (detector). Multiple runs of typically 500 � 3
sec were carried out at photon count rates of 500�2000 kHz. In this geometry
the contribution C1(t) is time independent due to the angular averaging of the
outgoing light over many speckle spots.

4.3 LONG RANGE CORRELATIONS

We characterized the setup by measuring C02(t) for different pinhole sizes
using moderately thick surrounding layers (L1; L2 � 50�m). The inset in
Fig. 1.12 shows the C02 values determined from the amplitude of C02(t). For
a quantitative comparison with theory it is necessary to take also into account
contributions outside the pinhole where the effective lateral confinement of
photon cloud spreads out linearly. We can write:

C 02 '
2X

i=1

Ci
2 (1.24)

The contributions inside the pinhole are given by the expression for a cylindrical
waveguide C1

2 = (4L)=(k20D
2l�), Eq. (1.4), whereas the contributions outside

the pinhole are due to an intensity step profile spreading out in a semi-infinite
sample C2

2 = 3=(2k20Dl�), Eq. (1.5), hence

C 02 '
4

k20D
2

L

l�
+

3

2k20Dl� =
4

k20D
2

L+ (3=8)D

l�
(1.25)

Hence we can take account for this additional contribution by introducing
an effective length of the pinhole L+ (3=8)D.

The experimental results are in excellent agreement with this prediction. It
can be readily seen that due to the quadratic dependence ofC02 onD the expected
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Figure 1.12 (a) Inset: Inverse amplitude 1=C0

2 as a function of the pinhole diameter D. Solid
line: theoretical prediction , Eq. (1.25), with no adjustable parameter. Main figure: C2(t)
correlation function for the smallest pinhole D = 4 �m (full circles). Solid line: best fit by
Eq. (1.15) with C2 = 1:1 � 10�2; L = 13:1� 1:3 �m. (b) Universal conductance fluctuations
C3(t) in comparison with C0

2(t). For t > 2 � 10�3ms, C0

2(t) (dotted line) has decayed and
C3(t) clearly shows up. Solid line: theory [Eq. (1.16)] with C3 = 1:3 � 10�4 ; L = 13:1 �m.
Inset: log-log plot of the same data set.
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amplitude of C3(t) is very small, C3 � (C 02)
2 < 10�5, for all pinhole sizes

except for the smallest one D = (4� 0:5)�m.

4.4 OBSERVATION OF OPTICAL UCF

To achieve an effective separation of time scales between C02(t) and C3(t)
we used a prelayer thickness L1 � 100�m. To increase transmission, we
replaced the colloidal suspension in (L2) by pure water. Due to the absence
of scattering in L2 we were now able to measure the full C2(t) correlation
function [Eq. (1.15)] of a cylindrical waveguide by illuminating the sample
from the L2-side. This provides additional information about the dynamics
of the particles inside the pinhole which is difficult to obtain otherwise. The
measured correlation function is shown in Fig. 1.12. Since we expect C2 =
(1� 0:2) � 10�2 � 1=g from theory for the pinhole foil thickness L = 13 �m,
it is in excellent agreement with the theoretical prediction in amplitude, shape
and characteristic decay time. These results demonstrate that the dynamics of
the particles inside the pinhole are largely unaffected by the lateral confinement
and that the distribution of path lengths is not significantly altered by residual
absorption at the pinhole walls.

In order to measure UCF the identical sample (D = 4�m) was used which
was now simply illuminated from the opposite side (L1). As seen in Fig. 1.12,
the contribution of C02(t) now decays very fast. For longer correlation times we
observeC3(t)which decays over more than four decades in time. The amplitude
C3 ' 1:3 � 10�4 is found in good agreement with the value C2 = 1:1 � 10�2
obtained from the C2(t) measurement. Equally good agreement is found by
comparing the shape of theC3(t) correlation function with the theoretical curve
[Eq. (1.16)] without any adjustable parameter.

5. SUMMARY AND CONCLUSIONS

It has been shown that the use of coherent laser sources combined with
accurate time correlation techniques allows to study very precisely the higher
order correlation functions C2(t) andC3(t). Based on a series of measurements
with different sample thicknesses L, beam spot sizesw, and transport mean free
paths l�, it has been possible to quantitatively confirm the scaling predictions
for C2. The time dependent correlation function C2(t) shows a good overall
agreement with diagrammatic calculations. However the predicted long time
t�1=2 algebraic tail has not been observed. Quantitative agreement can be
achieved by introducing a cut-off for the contribution of short scattering paths
to C2(t). The study of the amplitude C2 for extremely small values of w � l�

delivers further evidence that light has to be scattered at least once before
correlations can be built up by crossing of light paths.
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Universal conductance fluctuations (UCF) in the transmission of classical
waves have been observed using very small samples of concentrated colloidal
suspensions. The experimental results provide a complete picture of the micro-
scopic origin of UCF in disordered conductors in general. This demonstrates
that the (quantum) wave interference can be quantitatively described by the
simple model of diffusing waves crossing at locations inside the sample where
the lateral confinement is high. Like weak and strong Anderson localization,
UCF are a direct consequence of wave interference effects on a macroscopic
scale. These interference corrections increase with randomness resulting in the
breakdown of classical transport theory.
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