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Abstract. Intensity propagation of waves in dilute 2D and 3D disordered systems is well described by a
random walk path-model. In strongly scattering media, however, this model is not quite correct because
of interference effects like coherent backscattering. In this letter, coherent backscattering is taken into
account by a modified, self-attracting random walk. Straightforward simulations of this model essentially
reproduce the results of current theories on “non-classical” transport behavior, i.e. Anderson localization
in 1D and 2D for any amount of disorder and a phase transition from weak to strong localization in 3D.
However, in the strongly scattering regime corrections are necessary to account for the finite number of
light modes due to their non-vanishing lateral extention. Within our model this correction leads to the
observation that strong localization does not take place.

PACS. 42.25.Dd Wave propagation in random media – 71.23.An Theories and models; localized states

1 Introduction

The problem of light propagation in 2D and 3D disordered
systems can be treated by solving Maxwell’s equations, in
principle [1]. However, this is a very complicated task – an-
alytically as well as numerically – and considerable simpli-
fications are necessary, normally, in order to make qual-
itative and quantitative predictions. The most common
approach uses a Green’s function formalism [2,3] resulting
in a diagrammatic path model of amplitudes and – under
the assumption that there are no correlations – in a path
model of intensities. The latter can be mapped onto a ran-
dom walk of photons with a characteristic Boltzmann dif-
fusion constant DB = vE`

?/d, vE being the energy trans-
port velocity, `? the transport mean free path of uncorre-
lated, random steps and d is the dimensionality.

Most experimental results are accounted for by the dif-
fusion model, even in cases where the diffusion constant
cannot be forecast explicitely1. One result of the diffusion
theory is that the total transmitted intensity through a
non-absorbing 2D or 3D slab of thickness L follows Ohm’s
law (i.e. ∝ L−1). Through a 1D randomly layered stack
of thickness L, however, the average transmitted inten-

a e-mail: georg.maret@uni-konstanz.de
1 Extensions of the diffusion model with respect to non-

isotropic scattering (i.e. a scattering mean free path ` of
Lambert-Beer’s law different from `?), inter-particle correla-
tions (structure factor) and an effective medium approach are
treated in [2,3].

sity is proportional to exp(−L/ξ). This exponential decay
corresponds to a behavior which is generally called local-
ization; ξ being the localization length. This exponential
law cannot be explained by the above random walk model.
Deviations from the random walk model should also ap-
pear in 2D and 3D, especially at high disorder due to the
correlation between each path and its reversed counter-
part. Both paths have exactly the same length and thus
are always in phase at each starting and end point of
a loop. This correlation results in a constructive inter-
ference enhancement of a factor of two at these points2.
This so-called coherent backscattering (CB) doubles the
probability of light paths to form closed loops in com-
parison with non-interfering models. As a consequence,
CB reduces the diffusion constant and makes the diffusion
“non-classical”. In very strongly scattering samples, where
ke`

? <
∼ 1 (Ioffe-Regel criterion, “e” for effective medium),

a “non-classical” transport behavior was predicted, the
so-called strong or Anderson localization [4,5].

A twofold intensity enhancement with respect to the
incoherent background is also observed outside the sam-
ple. It is known as the CB-cone [6]. Experimentally, the
CB-cone was observed for light and acoustic waves. Nowa-
days, it represents a powerful tool for the characteriza-
tion of turbid samples. A CB-induced reduction of the
diffusion constant in case of quantum waves was veri-
fied for electrons [7] by applying a magnetic field which

2 In case of scalar waves. For vector waves it is approximately
a factor of 1.5 on average.
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breaks symmetry between the direct and reversed paths.
Similarly, optical CB is suppressed by magneto-optical
Faraday rotation [8–11] or by reciprocity breaking effects
at atomic level [12]. Anderson localization of light in 2D
or 3D, solely due to disorder, has not yet been observed
beyond any doubt [13–15].

Current theories treating the influence of CB on local-
ization make approximations which are strictly valid only
for the weak scattering limit. Predictions for the strong
scattering regime, i.e. where `? is of the order of the wave-
length, rely on extrapolation. The self-attracting random
walk model we present in Section 2 shows all essential fea-
tures predicted by these theories. This not only suggests
its significance but also provides an intuitive physical pic-
ture of the influence of CB on multiple light scattering in
strongly disordered media. In addition, it allows to eas-
ily account for the non-vanishing lateral extention of light
modes as described in Section 3. For simplicity, we only
consider the cases of scalar waves and isotropic scattering,
i.e. `? = `.

2 A self-attracting random walk model

CB increases the return probability to a former point of
the random walk independently of the path length. Con-
sequently it cannot be cast in terms of a modified struc-
ture factor and mapped on a renormalized random walk of
non-correlated scattering events. The phenomenon of CB
therefore results in a deviation from the simple random
walk model. Current theories treat CB in the following
way [3]: Due to CB the scattering becomes non-isotropic
thus changing DB. However, the non-isotropy depends on
DB itself what necessitates a self-consistent ansatz. Our
concept rather follows the (ensemble averaged) evolution
of a wavefront in real space and time. Thereto it is nec-
essary to understand the influences of CB on the wave-
front. Let us first consider the CB-cone outside a sam-
ple. After averaging out the speckle pattern the cone ap-
pears in exact backscattering of an incident plane wave
and has a full width at half maximum of about 1/k0`

?,
where k0 is the wavenumber in air. When using a point-
like source at a distance F from the sample, CB appears
around the source within a region of about F/k0`

? [6].
The general assumption is now that each scatterer inside a
multiple scattering medium can be regarded as a point-like
source. Approximating F by `? inside the multiple scatter-
ing medium one obtains a “CB-region” with a diameter of
about k−1

e = λe/2π which is approximately the width of
a light mode (λe is the effective medium wave length).
Of course, this cone is only obtained after averaging over
many loops and configurations of the scatterers. In the
following, we approximate those CB-regions by Gaussians
with a full width of 1/ke. At each scattering event a wave-
front is “emitted” which decreases exponentially due to
subsequent scattering events. In a random walk without
CB, the next scattering event would be chosen at random
angle and at a distance dr with an exponential distribu-
tion exp(−dr/`?) according to Lambert-Beer’s law. With

CB, however, the wave “feels” already visited points due
to the part of the wave that has propagated the reversed
path. These points, i.e. the CB-regions, must be taken into
consideration by an increased return probability. This sit-
uation is comparable to the double slit experiment where
the correct scattering pattern can be obtained by a co-
herent summation of all amplitudes or, as we do because
the intensity distribution is known, by preweighting the
scattering direction according to the interference pattern.
Thus, the probability distribution p in a random walk with
CB for the next step to the, say (n + 1)th point, is pro-
portional to:

p(rn+1) = e−dr/`?

(
1 +

n−2∑
i=1

exp
[
−|rn+1 − ri|2

2σ2

])
(1)
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dr = |rn+1 − rn|

1

2

rn

rn+1

p(r )n+1

ri

in
co

he
re

nt

co
he

re
nt

pa
rt

m
ax

(see
section

3)

1+∑ exp ...[

where the ri are the positions of the random walk. The
leading exponential factor in equation (1) reflects the
step length distribution according to Lambert-Beer’s law.
The 1 in the sum represents the incoherent summation
of all light paths (corresponding to the incoherent back-
ground of the CB-cone), the Gaussians stand for the
coherent backscattering enhancement. This model corre-
sponds to a self-attracting random walk, the strength of
the self-attraction essentially depending on the quantity
1/ke`

? [16]. Note that the (n − 1)th point is excluded as
single scattering does not contribute to CB.

We have studied this self-attracting random walk
model by Monte-Carlo simulations. The procedure is
based on a “standard” random walk algorithm but with
a modified step length distribution according to equa-
tion (1). It is worth noting that the random walk does not
take place on a lattice, the positions of the scatterers are
not predetermined and random walks of different photons
are not correlated. The simulations have been performed
on a cluster of 12 PCs and took about 4 months.



R. Lenke et al.: Coherent backscattering and localization in a self-attracting random walk model 237

10
-3

10
-2

10
-1

1

<
R
2
>
/2
t
[v
E
l*
]

0

0.2

0.4

0.6

0.8

1.0

10
1

10
2

10
3

10
4

t [l*/v
E
]

1.
0

0.0
3

0.
1

0.01/t

1/kl*=1.0

0.03
0.1

0.3

0.5
0.70.1/t

c
o
h
/(
in
c
o
h
+
c
o
h
)

Fig. 1. Time-dependent Monte-Carlo simulations of a 1D self-
attracting random walk for different values of 1/ke`

? (scalar
waves). Upper graph: Mean square displacement 〈R2〉 divided
by 2t. The dashed lines are guidelines to the eye for strong lo-
calization (∝ 1/t). Lower graph: Return probability due to CB.

The results for the 1D case are shown in Figure 13. The
upper part of the figure shows a log-log-plot for different
1/ke`

?-values of the mean square displacement 〈R2〉, i.e.
the average starting-to-end distance of the random walks,
divided by 2t as a function of the propagation time t. This
is the definition of the diffusion constant of a normal ran-
dom walk in the limit t → ∞. A value smaller than 1
(in units of vE`

?) indicates that the diffusion constant is
reduced due to the self-attraction. A (locally) non-zero
slope b in this plot signifies a diffusive process following
another power-law, i.e. 〈R2〉 ∝ t1+b [17]. Photon diffusion
is stopped when b = −1 and strong localization is reached.
Smaller values of b are unphysical in this context. The
lower plot of Figure 1 shows the time-dependent proba-
bility that a photon is scattered back due to CB to form
a closed loop, i.e. the ratio of the coherent part in equa-
tion (1) to the incoherent+coherent part. The importance
of this plot will be discussed further below. The propa-
gation time t was obtained by multiplying the simulated
number of scattering events with the average step length
〈dr〉 obtained by the simulations. Due to CB, 〈dr〉 itself
becomes time-dependent and smaller than `?, and also the
step length distribution deviates from an exponential one.

3 Note that we added the 1D case only for completeness with
respect to other works. As already mentioned in the introduc-
tion, wave propagation in 1D cannot be explained by a simple
random walk model of intensities but the amplitudes of all
paths must be added up coherently.
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Fig. 2. The 2D case. Note that for 1/ke`
? = 0.1 the curve

in the lower plot does not saturate but slowly increases. The
simulations have been performed in 3 steps for path lengths
up to 5× 103, 5× 104 and 5× 105 scattering events averaging
over about 105, 104 and some hundred photons, respectively. In
the graphs, parts of different calculation precision are marked
differently.
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Fig. 3. The 3D case. In the lower plot, the curves for values
1/ke`

? ≤ 0.5 tend to saturation. Therefore we estimate ke`
? =

2 for the transition from weak to strong localization. Remark to
the jumps in the curves between parts of different precision (t ≈
30 000): The simulation error in the slope of the curves is much
smaller than the error in their absolute value. Obviously, each
photon is localized sooner or later. The center of the localized
wave, however, is different for each photon.
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Fig. 4. Monte-Carlo simulations according to the self-
attracting random walk model explained in Section 2 of the
pulse broadening through a slab of thickness 10`? in 3D for
different 1/ke`

?-values. Absorption length `a = 104`?. Inset:
Total transmitted intensity as a function of slab thickness L.
For ke`

? = 1 the intensity strongly deviates from diffusion
theory.

Figures 2 and 3 show the results for the 2D and 3D case.
Due to a limited calculation power the behavior of 〈R2〉/2t
in 3D is not quite clear for values 1/ke`

? ≈ 0.5. However,
by studying the return probability (lower plots) of the 1D
and 2D case as well as of the 3D case for 1/ke`

? > 0.6,
it turns out that the onset of strong localization takes
place when the return probability due to CB goes to 1.
This criterion has the advantage that the error bars of
the values coh/(incoh+coh) seem to reduce faster with in-
creasing number of simulated photons than those of the
mean square displacement, thus giving a more reliable in-
dication for the onset of localization.

Within the simulated path lengths, our results repro-
duce the behavior which was found by other theories:
strong localization in 1D and 2D and a phase transition
from weak to strong localization in 3D. We find a critical
value4 of ke`

? ≈ 2. The differences in the dimensionalities
arise from the fact that the average density of scatter-
ing points in a random walk of n steps is proportional
to n(1−d/2) [18]. Our model gives a very clear picture of
the influence of CB on multiple light scattering and it
can be studied by Monte-Carlo simulations. For example,
Figure 4 shows the simulated pulse broadening and total
transmitted intensity of light propagating through a slab,
for different values of 1/ke`

?.

3 Corrections due to strong scattering

As already mentioned in the introduction, current local-
ization theories make approximations which are strictly

4 Of course, this value scales with the precise extention of
the CB-region. In another Ansatz, calculating (in the diffusion
limit) the CB-cone inside a turbide 2D medium, we obtain a
cone which is twice as large.

2

1

Fig. 5. If two points of a random walk are closer together
than k−1

e their CB-regions overlap. Simple summation of both
curves results in an enhancement factor larger than 2. There-
fore we have chosen a probability distribution which is given
by the envelope (gray curve). Numerically this is carried out as
follows: When choosing the next step, we first start as before
according to equation (1). The choice of dr tells us if the next
step corresponds to incoherent or to coherent scattering into
the CB-region of a certain former scattering event. If however,
in case of coherent scattering, this step lies closer to another
former scattering event (i.e. if it belongs to the hatched region
of the neighboring scattering event), this choice is rejected.
Thus, a probability distribution according to the envelope of
the Gaussians is obtained.

valid only in the weak scattering limit. This is also the case
for the model we have developed so far as we will see in the
following. CB creates a twofold interference enhancement
at most. Consequently, the dashed line in the drawing to
equation (1) indicates the maximum values for the coher-
ent plus incoherent part resulting in a maximum value for
the ratio coh/(incoh+coh) of 0.5. However, in Section 2 we
have shown that the onset of localization happens when
this ratio approaches 1 which – as we see now – is not pos-
sible. “Microscopically”, the reason for this contradiction
is the following (see Fig. 5): In equation (1) the Gaussian
curves have an extention of k−1

e . If two points of a ran-
dom walk are closer than k−1

e , the Gaussians overlap re-
sulting in a CB-enhancement larger than 2. Actually, light
sources much closer than k−1

e should behave like a single
light source in our photon random walk model and should
therefore only be counted once (or, if they are counted
twice, the incoherent background must be counted twice,
too). We accounted for this by replacing the sum of the
Gaussians in equation (1) by their envelope (see Fig. 5) in
all simulations. This obvious approximation takes the two
most important criteria mentioned above into account: No
interaction between widely separated scatterers. Two scat-
terers lying at the same position are counted only once.
The results of this refined model are shown in Figures 6–
8. Now the relative amount of coherent backscattering is
always smaller than 0.5. The diffusion constant is still
decreased by coherent backscattering but there no indi-
cation of strong localization is seen. In 1D and 3D the
diffusion constant converges towards a constant finite
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Fig. 6. Time-dependent simulations of a 1D self-attracting
random walk corrected according to Section 3. The diffusion is
slowed down by CB but there is definitively no indication of
strong localization.
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Fig. 7. Simulations according to a corrected self-attracting
random walk in 2D.

value5, whereas in 2D the diffusion follows another power
law, at least up to 5× 105 scattering events.

5 Again, we want to emphasize that we do not say that there
is no localization in 1D. However, it is not sufficient solely to
consider the ladder and the most crossed diagrams.
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Fig. 8. Simulations according to a corrected self-attracting
random walk in 3D. Note that here the CB return probability
does not even reach the maximum value of 0.5.

4 Summary

We have studied the influence of coherent backscatter-
ing on wave propagation in disordered media in a self-
attracting random walk model. Despite its simplicity, this
model – before the correction with respect to overlapping
CB-regions – well reflects the findings of other theories and
gives a very intuitive picture of the underlying physics.
However, using this model, it was possible for the first
time to account for corrections on the length scale of k−1

e

necessary in the strongly scattering regime. Within this
model, these corrections eliminate all indicators of strong
localization in the context with CB.

It would be interesting to study whether this model
can be mapped onto more rigorous theories and whether
refinements as suggested here would also lead to the dis-
appearance of strong localization there.

We thank R. Klein and H. Stark for fruitful discussions. Finan-
cial support from the Optics Center Konstanz is acknowledged.
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