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Abstract
The ‘glory’ results from light scattering of single, sub-millimetre to
millimetre-sized spheres in the exact backscattering direction. The so-called
coherent backscattering by disordered media is the intensity enhancement in
the very same direction due to the interference between each light path and
its reversed path. This pair of paths always exists in multiple-scattering
media. The two phenomena have very similar properties, which will be
studied and compared in more detail, experimentally as well as by numerical
calculations.
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(Some figures in this article are in colour only in the electronic version)

1. Introduction

The ‘glory’ is a natural light scattering phenomenon which
can be observed around one’s own shadow from sunlight
falling on clouds or fog. Around the shadow one can observe
bright, coloured rings, which in the ideal case reproduce at
regular distances up to about five times (see figure 1). This
phenomenon is a light scattering effect of the individual water
droplets in the clouds resulting from the rotational symmetry
of the droplets around the optical axis. Due to this symmetry,
there are whole classes of light rays in the sphere having exactly
the same length and thus interfering constructively in the
exact backscattering direction (so-called axial focusing [1]).
Unlike the rainbow, the ‘glory’ is an interference effect3. The
aperture angle of the rings is proportional to the wavelength
in air λo and inversely proportional to the radius a of the
droplets. Of course, the perceived diameter of the rings is
independent of the distance from the clouds. The diameter
of water droplets in clouds range from some micrometres
to some tens of micrometres, normally. The particle size
distribution, however, mostly fluctuates only by a few per cent.
Nice observations of the ‘glory’ in nature were reported for
droplet diameters of about 40 µm [2], for example. Note
that the ‘glory’ is not only restricted to water droplets but is
generated by any transparent sphere with diameters between
some micrometres and millimetres.
3 Of course, there are also interference effects which accompany the rainbow,
for example the supernumerary arcs. However, they are relatively faint.

Figure 1. Phenomenon of the ‘glory’ calculated using Mie theory
for water droplets with a diameter of 20 µm. Angle range: ±7.45◦
around the exact backscattering direction. In nature, the bright spot
in the centre is covered by one’s own shadow and the coloured rings
are superimposed on a white diffuse background originating from
the light which was scattered several times in the cloud.

There are other natural phenomena resulting in an
increased backscattering intensity [3]: the cornfield effect,
the Heiligenschein and the sylvanshine. The cornfield effect
originates from the simple geometrical fact that the shadow of
each blade is hidden by the blade itself, thus enhancing the
average intensity in the exact backscattering direction. The
Heiligenschein and the sylvanshine result from lens effects
(cat’s eye) of dewdrops on a meadow or on leaves of special
plants, respectively. These geometrical effects are not studied
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further here. They can be brighter than the ‘glory’ but they are
always colourless and do not show any oscillatory signature.

If the spheres are not perfectly round, i.e. if the length of
the light paths belonging to one ray class differ by about λ, the
rotational invariance is lost. However, the symmetry between
each light path and its reversed path is independent of any
deformation of the sphere, still leading to a twofold relative
intensity enhancement in the exact backscattering direction.
For reasons which will be discussed further below with respect
to light scattering by disordered media,we call this interference
between a pair of paths coherent backscattering (CB). The
backscattering pattern of monodisperse but imperfect spheres
resembles to that of the ‘glory’. The similarities and
differences will be studied in more detail in this paper.

If, in addition, the imperfect spheres are polydisperse,
the oscillations in the backscattering profile are averaged out
and only the intensity enhancement due to CB is left. The
light scattering properties of such samples are very similar to
that of completely random, disordered media such as milk,
snow or any white paint. In these materials, this intensity
enhancement is known as the CB cone [4,5]. In a semi-infinite,
non-absorbing turbid sample the CB cone has a triangular tip
and a full width at half maximum of about 1/ko�

� radians;
ko = 2π/λo is the wavenumber in air. The so-called transport
mean free path �� is the characteristic length of the photon
random walk in the disordered system; 1/�� quantifies the
turbidity of the medium.

Precisely speaking, the twofold CB intensity enhancement
of a disordered medium is only observed if incident and
detected polarization states are the same. This is guaranteed by
the theorem of reciprocity [6], which states that the scattering
matrices describing any direct and reversed light path are the
transpose of each other. In the crossed channels, a cone is
only observed to the extent that the scattering matrices are
symmetric [7]. In turbid media, the enhancement factor in the
crossed channels is smaller than 1.2, generally. For a perfect
single sphere, the matrix is always symmetric.

In the course of this discussion, we tacitly made the
transition from multiple scattering of light rays in single
particles, using a ray optics approach, to multiple light
scattering between different particles. In dense media the
distinction between the two regimes cannot always be made as
easily as for clouds, for example, where the ‘glory’ is a single-
and the white background a many-particle effect. In clouds,
the distance ��, which is about the visibility distance, is orders
of magnitudes larger than the water droplet diameter. For a
detailed description of the phenomenon of CB in disordered
media the reader is referred to [7]. In the following we restrict
ourselves to a comparison between the ‘glory’ and CB of
imperfect spheres.

2. The ‘glory’

Mie theory [8] is an exact analytic solution of Maxwell’s
equations for light scattering by spheres with a uniform index
of refraction. However, this is not a trivial solution but a row
expansion of spherical Bessel functions. A vast literature of
efforts exists to explain natural optical phenomena of water
droplets by more ‘hand-waving’ arguments (see e.g. [1, 8] and
references therein). These explanations, mostly making use

Figure 2. Illustration of light rays with one reflection and surface
wave part in a water droplet. Any path inside the marked region is
possible, all having the same optical length. βc is the critical angle
of total reflection.

of ray optics, are more satisfying. Moreover, they enable
the comparison with other phenomena such as CB and they
have helped in developing powerful calculation algorithms.
The validity of the ray optics approach for spheres larger than
several λo is consolidated by the expansion of Mie’s solution in
the so-called Debye terms [1, 9]. The Mie terms correspond to
partial waves with origin in the centre of the sphere. Debye’s
row expansion decomposes each Mie term in waves, which
are reflected by or pass through the surface of the sphere
according to Fresnel’s law. The reflected waves run through
the origin again and can be reflected a second time and so on.
A Debye term is obtained by collecting all the terms with the
same number of reflections. In most cases there is only one
possibility for a light ray with a given number of reflections
inside the sphere, thus allowing a direct comparison between
ray optics and Debye terms.

For water droplets (more precisely spheres with a relative
index of refraction m <

√
2), there are no ‘trivial’ light rays

corresponding to scattering in the exact backward direction af-
ter one reflection inside the sphere. There are only edge rays,
entering the sphere under the critical angle of total reflection,
which in addition have propagated 14.4◦ (for m = 1.333) along
the surface in total (see figure 2). For a detailed description
of those surface waves see [1, 8]. Other rays with more than
one reflection inside the sphere are possible as well. However,
with increasing number of reflections, again only the edge rays
are of importance as only in this case (which is close to total
reflection) is the remaining amount of the repeatedly reflected
intensity non-negligible [1]. It turns out that light rays with
ten internal reflections form the next important term for the
natural ‘glory’. After averaging the size parameter koa over
±5% (m = 1.333, no absorption), we found that the term with
ten reflections predominates over the one-reflection term for
values koa � 175. For values koa � 1200, both terms together
contribute 75% to the totally reflected intensity (where it makes
no difference whether the terms are added coherently or inco-
herently)4. The absolute amount of backscattered intensity is
very sensitive to the precise values of koa and m. We shall not
discuss this further here as for the phenomenon of the ‘glory’,
i.e. a relative intensity enhancement in the exact backscatter-
ing direction with respect to somewhat larger backscattering

4 All the calculations have been performed using the Mie Scattering User
Interface (Valley Scientific 1998).
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4 cm

Figure 3. Magnetically levitated water drop in the vertical bore of a
superconducting magnet. Field strength 18 T. Diameter
approximately 1.3 cm. The flashlight of the camera scattered back
via edge rays (arrow) is clearly visible.

ϕ

= +
                    2ϕ      β

Figure 4. Illustration of the polarization of rays backscattered from
different points on a sphere in the case of circular polarized incident
light. By decomposition into the linear polarized eigenstates, this
drawing also illustrates that the detected intensity in the case of
linear polarization is ϕ dependent for θb > 0, generally [1].

angles, it is only necessary that light is scattered in the back-
ward direction at all. The absolute amount of backscattered
intensity is only of secondary importance in this context. The
predominant contribution of the edge rays accounts for the
strong coloured regular ‘glory’ rings corresponding to the in-
terference pattern of a light ring. On the photograph in figure 3
the edge rays of a magnetically levitated water drop are clearly
visible. Magnetic levitation is quite a promising method to
study water droplets of nearly any size under ‘micro-gravity’.
Other techniques, such as suspended [10], free falling [11] or
optically levitated [12] droplets, have the shortcomings of de-
forming the sphere or being restricted to very small particles.
Unfortunately, this 20 T magnet was available only for a short
time, so we cannot present further measurements of magneti-
cally levitated spheres here.

In the following we shall only study circular polarized
light, which better reflects the rotational invariance of the
problem. Moreover, the case of the same incident and detected
circular polarization, ‘++’, is preferred for CB measurements,
as then direct reflexions and single scattering, which do not
contribute to CB, are suppressed. Figure 4 illustrates the
polarization of the edge rays (circular incidence) scattered in
the exact backscattering direction. In the most general case
the scattered light is elliptically polarized. For symmetry
reasons the ellipse is rotated by the azimuthal angle ϕ along
the contour of the sphere. By an appropriate choice of the
coordinate system of each ray one can easily show that these
ellipses can be decomposed into a part with the same circular
polarization as incident but with a relative phase shift of 2ϕ and

Figure 5. Measured intensity distribution of a glass sphere
(m = 1.8625 + i8 × 10−7, diameter 5000 ± 1 µm) as a function of
backscattering angle θb. Plane-parallel incident wave with
λo = 514.5 nm, circular polarization. The sphere floated on an air
jet. The square of the second-order Bessel function well reflects the
scattering profile of the case ‘++’. Here, the effective radius a′ is not
the sphere radius, i.e. does not correspond to edge rays as m >

√
2,

but [8] a′/a = m
√

1 − m2/4 (minus an error of 2%). Inset: the
same measurements for the case ‘+−’ and comparison with the
zeroth-order Bessel function. The curves are rescaled to unity for
θb = 0. The measured and calculated scattering patterns do not
precisely correspond to J 2

0 but also contain other frequency parts as
can be seen from the blown-up segment. The experimental set-up is
described in section 4.

the opposite state with a ϕ-independent constant phase shift β.
Phase-consistent integration over all edge rays results, in the
case ‘++’, in an angular intensity distribution proportional to
J2(koaθb)

2 (see figure 5), where θb is the angle with respect to
the exact backscattering direction. J2 is the Bessel function
of second order, whose value is zero for θb = 0. In the
case of orthogonal incident and detected circular polarization
‘+−’, the square of a zeroth-order Bessel function J0(koaθb)

2

is obtained (see the inset of figure 5).
Such simple Bessel functions are generally not obtained

from exact Mie calculations for specific values of koa and m,
especially not in the case ‘+−’. For example, Mie calculations
for the case ‘+−’ in figure 5 reveal an additional oscillating
term, which we could also detect in our measurements. For
smaller particles, the situation is even worse and the scattering
pattern can completely differ from J 2

0 . The case ‘++’ is
generally approximated quite well by J 2

2 . In any case, after
averaging over a certain parameter range both Bessel functions
well reflect the scattering patterns, as exemplified in figure 7
for the ‘glory’ of water droplets with a diameter of 20 µm (for
comparison, the inset of figure 8 shows the scattering pattern
for one specific parameter set). Note that the ‘effective radius’
in the fitted Bessel functions is about 3% larger than the real
radius of the water droplets. This can be explained by the
fact that for m <

√
2 the light is scattered in and around the

exact backscattering direction via surface waves (see figure 2).
Therefore, one can suppose that the scattering patterns are
better approximated by J0/2(ksaθb)

2, where ks is the surface
wavenumber. For this case, we obtain [1, 11] ks/ko ≈ 1.036.

Figure 8 shows the calculated scattering patterns for
a 20 µm droplet averaged over the red, green and blue
spectrum range for non-polarized light. These curves have
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Figure 6. Similar measurement as in figure 5 but with illumination
by a divergent light source. After linear rescaling in the ordinate
according to [7], the scattering pattern is identical to that with a
plane-parallel illumination.

Figure 7. Mie calculations for a water droplet (m = 1.333, no
absorption, diameter 20 µm) in backscattering direction for circular
polarized light. The wavelength was averaged between 0.45 and
0.5 µm. The intensity of the case ‘+−’ was rescaled by a factor
0.7776. The Bessel functions were averaged over the same
wavelength range. An ‘incoherent’ part of 0.071 had to be added to
J 2

0 . This results from the fact that in the case ‘+−’ the scattering
pattern for one specific parameter set still contains other, non-trivial
oscillating terms, which disappear only on average. Those
additional oscillating terms, for which we do not have any simple
explanation, essentially originate from the Debye term
corresponding to one reflection inside the sphere.

been used to create figure 1. Of course, in order to
numerically reproduce the natural ‘glory’, one should also
take into account the spectrum of the sun, the sensitivity of
the eye and the chromatographic reproduction on a screen or
a photograph [13–15], as well as the droplet size distribution
and the divergence of the sunlight (or equivalently its coherence
area) [16]. Sunlight on earth is to 50% coherent within a region
of (40 µm)2 [17], giving approximately the upper limit of the
droplet diameter for the ‘glory’. Here, our intention was only to
give an idea of the natural ‘glory’. The result is quite satisfying
compared with [2], for example.

3. Coherent backscattering

So far, we have only considered perfect spheres. Figure 9
shows a measurement similar to that of figure 5 but for a
sample of imperfect glass beads in water. The scattering
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Figure 8. Backscattered intensity (unpolarized) of a water droplet
(diameter = 20 µm) averaged over 0.45–0.5 µm, 0.49–0.58 µm and
0.57–0.65 µm. Inset: the same droplet but at a fixed wavelength of
λo = 0.56 µm.

Figure 9. Measured backscattering intensity for a sample of
imperfect glass beads in water and comparison with the zeroth-order
Bessel function. Plane-parallel incident wave, circular polarization,
m = 1.5/1.333, λ = 514.5 nm. J0 was averaged in the particle
diameter over ±9%. The fitted average diameter was a little smaller
than the value given by the manufacturer (1090 µm ± 9%). Dashed
curve: measured crossed circular polarized channel. For
comparison, the curve 1 + J0 was rescaled according to the
transformation y = (y − 1) ∗ 0.55 + 1.45 − 26 ∗ x + 390 ∗ x2

(points), which corresponds to a CB enhancement of only
2/1.45 = 1.38. Inset: measurement with a convergent incident
wave and comparison (by rescaling [7]) with the measurement with
a plane-parallel incident wave.

pattern for the case ‘++’ is well approached by 1 + J0(2koaθb).
Such behaviour is obtained when there is only a constructive
interference between each light path and its reversed path.
Light paths with different azimuthal angles ϕ (see figure 4)
are added incoherently. This situation is analogous to that of
CB in multiple-scattering media. In the crossed channel ‘+−’
essentially the same scattering pattern is found but with a lower
contrast, which suggests that the scattering matrices of the light
rays are no longer completely symmetric.

The phenomenon of coherent backscattering is also called
weak localization as it sends more light back to the origin of
the light source than a model neglecting interference effects.
In a sense, CB acts like a phase conjugating mirror: when
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0.05°
7.5Tesla0 Tesla

Figure 10. Influence of a magnetic field on the backscattering
pattern of a glass sphere with a specific Verdet constant of
V = −166 rad T m−1 at λo = 457.9 nm (temperature 15◦C).
Diameter 5.2 mm, m = 1.7, material ‘Hoya FR5’. At 7.5 T the
whole diffraction pattern was shifted in the direction of the magnetic
field by an angle of 1.6 × 10−4 rad.

using divergent or convergent light, the focus of the diffraction
pattern lies in a plane through the (image) light source. The
same is true for the ‘glory’. Of course, the diffraction pattern of
one single sphere can be detected at any point along the optical
axis. However, in the case of many spheres or a moving sphere
a sharp diffraction pattern is only obtained at the intersection of
all optical axes. We have verified this behaviour for the ‘glory’
(see figure 6) and for CB in the case of imperfect spheres (inset
of figure 9). Similar experiments for the CB cone of disordered
media can be found in [7] and references there.

The only effect which destroys CB is Faraday
rotation [18]. However, this is only if the light is also
depolarized by the multiple scattering [19]. For the part of the
light where the polarization is preserved, the CB cone is not
destroyed but shifted out of the exact backscattering direction,
when applying a magnetic field perpendicular to the incident
circularly polarized light [19, 20]. We could also observe
this Faraday-induced shift for the backscattering pattern of
glass spheres with a high Verdet constant (see figure 10).
Experimentally, we verified a linear shift corresponding to an
angle of −2σ V 
B/ko in the direction of the magnetic field

B (σ is the handedness of the circular polarization), once
for a lead glass sphere (Schott SF57, diameter 5 mm, index
of refraction m = 1.88) with a specific Verdet constant of
V = 49 rad T m−1 and another time for a sphere made
of a paramagnetic glass containing about 50 wt% Tb3+ ions
(see figure 10). No shift was observed in the case ‘+−’, as
expected [19]. These spheres only showed a backscattering
pattern similar to that of figure 9 (imperfect spheres), but there
is no reason why this shift should not take place for perfect
spheres as well. This behaviour under magnetic field nicely
demonstrates that CB and the ‘glory’ are interference effects.

4. Experimental set-up

For these experiments we used the ‘standard’ CB set-up
described in [7, 19], for example. It consists of an Ar+

laser with a coherence length of about 4 cm, whose linear
polarized beam was expanded to a diameter of about 2 cm. The
backscattered light was detected via a semi-transparent mirror
by a CCD camera positioned in the focus of a 250 or 500 mm
lens. Another linear polarizer (analyser) was placed between
the semi-transparent mirror and the lens. Circular polarization
was created (and detected) by placing a λ/4 phase retarding
plate between the semi-transparent mirror and the sample. The

pictures of the camera, which are rotationally invariant in the
case of circular polarization, were averaged in the azimuthal
angle around the exact backscattering direction. In order to
create a convergent or divergent wavefront, an additional lens
was put between the semi-transparent mirror and the beam
expander. The 7.5 T superconducting magnet had a horizontal
bore with a diameter of 50 mm in which a non-depolarizing
mirror was placed for illumination and detection perpendicular
to 
B . During a measurement cycle, the sample was moved to
average out the speckles. If the sample consisted of many
particles, the volume fraction was chosen such that multiple
scattering by more than one sphere was negligible.

5. Summary

In sections 1 and 2 we gave a short summary of the present
understanding of the ‘glory’ and CB, putting emphasis on the
comparison between the two phenomena. Both the ‘glory’
and CB are interference effects, scaling with λo/a and λo/�

�

depending on what the relevant parameter is. They originate
from the symmetry around the exact backscattering direction
(axial focusing). In the case of CB, there is only the symmetry
between direct and reversed paths, leading to a twofold
intensity enhancement, at most. The ‘glory’ is based on the
interference between all paths which are rotationally invariant
around the optical axis, leading to a destructive interference
(i.e. no intensity) for θb = 0 in the case ‘++’ and to an intensity
maximum in the case ‘+−’. We found that in the case ‘++’ the
oscillations of the ‘glory’ are well described by the square of the
second-order Bessel function. The case ‘+−’ corresponds to
the square of a zeroth-order Bessel function but only on average
over a certain size parameter range, which corresponds to a
reduction of the coherence length. Note that sunlight (together
with the sensitivity range of the eye) has a coherence length
of approximately 2λ2/π�λ = 3 µm. By precisely studying
both Bessel functions it turns out that the relevant wavelength
for m <

√
2 is not λo but the wavelength of the surface wave.

In section 3, we studied a sample of imperfect (not
necessarily elliptic [21]) spheres whose backscattering pattern
is proportional to 1 + J0(2koaθb). This corresponds to CB,
i.e. solely to the interference between each light path and its
reversed path. For further comparison we illuminated the
samples with divergent or convergent wavefronts. In both
cases, the scattering pattern reproduces in the plane around
the (image) light source. Finally, we applied a magnetic field
perpendicular to the incident light, resulting in a shift of the
scattering pattern out of the exact backward direction due to
magneto-optical Faraday rotation. This last experiment nicely
demonstrates that it is an interference effect.

The ‘glory’ and CB are only two extreme cases of
backscattering patterns. We have also observed situations
lying in between. The comparison between the ‘glory’ and
CB is important for the interpretation and evaluation of CB
measurements in dense, disordered samples consisting of large
particles, as there may be a smooth transition from inter-
to intra-particle multiple scattering. These studies also put
the meaning of ‘single scattering’ (which normally does not
contribute to CB) into another perspective. Finally, it is worth
mentioning that a ‘glory’ measurement can be very useful for
the alignment and calibration of a CB set-up.
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