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Geometric view on colloidal interactions above the nematic-isotropic phase transition

Holger Stark*
Fachbereich Physik, Universita¨t Konstanz, D-78457 Konstanz, Germany

~Received 15 March 2002; published 30 October 2002!

Particles dispersed in a liquid crystal above the nematic-isotropic phase transition are surrounded by a
surface-induced nematic wetting layer. When the nematic coronas of two particles overlap, they experience a
strong attraction since the volume of nematic ordering and therefore the free energy is reduced. For normal
anchoring of the liquid-crystal molecules on the particles’ surfaces, we demonstrate that the implementation of
this geometric view reproduces the Yukawa interaction derived by Galatola and Fournier in a recent paper
@Phys. Rev. Lett.86, 3915~2001!#, however with half the strength. To understand the factor 2, we rederive the
Yukawa potential with the approximation of linear superposition of two one-particle profiles. At the end, we
comment on the similarities of our approach to the screened electrostatic interaction of charged colloids.
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In recent years, dispersions of colloidal particles in a ne
atic liquid crystal have attracted considerable attention, si
new and interesting phenomena arise through the comb
tion of colloidal suspensions and anisotropic fluids@1–5#.
The one-particle properties, central for the understanding
this new soft-matter system, are determined by the orie
tional order around a single particle that exhibits topologi
point and line defects. Three characteristic configurati
~dipole, Saturn ring, and surface ring! @6# and their response
to external fields@7# were identified theoretically and verifie
experimentally. With the calculation of the Stokes drag, d
namic properties came into focus@8#. Elastic distortions in
the nematic order mediate two-particle interactions of dipo
or quadrupolar type@1,9#. They lead to prominent structur
formation involving chaining@10#, gel-like ordering with
viscoelastic properties@11#, and even ordered structures@12#.
A numerical method to simulate several particles in a ne
atic host was developed@13# and cluster formation was pre
dicted @14#.

This paper addresses colloidal interactions in a liqu
crystal solvent above the nematic-isotropic phase transi
at temperatureTc . Bounding surfaces induce nematic ord
that decays to zero in the bulk on a length scale determ
by the nematic coherence lengthjN @15#. When the surface-
induced nematic wetting layers of two parallel plates ov
lap, they are strongly attracted to each other@16# since the
volume of the energetically unfavorable liquid-crystal ord
ing is reduced. In this paper, we always assume normal
choring of the liquid crystal molecules on a bounding s
face. Applying the mechanism just introduced to the nem
coronas of spherical particles, we obtain a different colloi
interaction~see Fig. 1!. It also possesses a repulsive cont
bution due to the elastic distortions of the director field co
necting the particles. Our problem bears analogy to the tr
ment of interaction potentials in a binary liquid composed
A andB components with particles wetted, e.g., by theA-rich
liquid phase @17–19#. Colloidal interactions in a liquid-
crystal solvent aboveTc were simultaneously studied b
Galatola and Fournier based on a numerical approach@20#
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and by Borsˇtnik, Stark, and Zˇumer who modeled the orien
tational order between two micron-sized particles with t
help of ansatz functions@21#. Borštnik et al. demonstrated
that the range of the dominating attractive part is easily t
able by temperature. This feature offers the possibility
inducing flocculation close to the nematic-isotropic pha
transition in an otherwise stabilized colloidal system@22#. A
first experimental verification of the attractive interactio
with the help of an atomic force microscope is due to Kocˇe-
var et al. @23#. Galatola and Fournier, on the other han
developed a combined analytical and numerical appro
with which they predicted that colloidal dispersions of pa
ticles whose size is of the order ofjN are solely stabilized by
the repulsive component@24#. In addition, they showed by
analytical means that the two-particle interaction assumes
form of a Yukawa potential for particle separations mu
larger thanjN @24,25#.

In this paper, we concentrate on particle sizes much la
than jN . We quantify the geometric view that the overla
ping of the nematic coronas of two particles leads to a str
attraction since the total volume of nematic ordering a
therefore the free energy is reduced. This idea, which
some resemblance to the origin of depletion forces in c
ventional colloidal suspensions@27#, leads to an interaction
potential of Yukawa type, however, with half the streng
compared to the result of Ref.@24#. To interpret the factor 2,

FIG. 1. The overlapping of the two nematic coronas of thickn
jN induces a strong attractive interaction between the particles~the
liquid-crystal molecules are normally anchored on the particles’ s
faces!. In the geometric view, the negative of the free energy of
excess orientational order in the dark shaded region is the inte
tion energy. For an exact definition, see Eq.~12!.
©2002 The American Physical Society05-1
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we rederive the Yukawa potential with the help of the a
proximation of linear superposition well known in conne
tion with the Debye-Hu¨ckel approximation for electrostati
cally stabilized colloids on which we shortly comment at t
end @26#.

We describe the orientational order of the constituent r
like organic molecules of a liquid-crystal by the symmet
and traceless second-rank alignment tensorQ. In the uniaxial
case, i.e., when all molecules align on average along the
vectorn called director, the alignment tensor takes the fo

Qi j 5
3

2
SS ninj2

1

3
d i j D , ~1!

where d i j is the Kronecker delta. We have introduced t
Maier-Saupe order parameterS to signify the degree of ori-
entational order. For weak surface-induced nematic orde
in the isotropic phase, it is sufficient to employ th
Landau–de Gennes free energy density in the harmonic
proximation,

f b5@a0~T2T* !Qi j
2 1L~¹kQi j !

2#/2, ~2!

where¹k indicates partial derivative with regard toxk , and
Einstein’s summation convention over repeated indices
employed. In the isotropic phase,T.T* , and the first and
second term on the right-hand side quantify, respectively,
free energy to create or distort the orientational order.
simplicity, we assume the one-constant approximation for
elastic terms. To model the anchoring of the liquid-crys
molecules at the surface of a particle, we use the surface
energy density@28#,

f S5W~Qi j 2Qi j
(0)!2/2. ~3!

In the following we assume that the particles favor uniax
order along the surface normaln̂, i.e., Qi j

(0)5 3
2 S0( n̂ i n̂ j

2 1
3 d i j ). If we write all lengths in units of the nematic co

herence lengthjN5AL/@a0(T2T* )# and introduce the sur
face coupling parameterg5L/(WjN), the reduced free en
ergy in units ofLjN/2 reads

F@Q~r!#5E @Qi j
2 1~¹kQi j !

2#d3r 1
1

gE ~Qi j 2Qi j
(0)!2d2r .

~4!

Its variation leads to the Euler-Lagrange equation in the b

“

2Qi j 5Qi j ~5!

and to the mixed boundary condition

n̂•“Qi j 1
1

g
~Qi j 2Qi j

(0)!50, ~6!

wheren̂ points towards the center of a spherical particle.
performing the variation, we implied thatQ is already cho-
sen symmetric and traceless.

One spherical particle of radiusR carries a corona o
surface-induced nematic order. In accordance with
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boundary condition and the symmetry of the system,
choose the uniaxial alignment tensor of Eq.~1! with S
5S(r ) andn5er , wherer is the distance from the center o
the particle ander is a unit vector pointing along the radia
direction. With such an alignment tensor, the total free
ergy is

F

4p
5

1

2E F S 11
6

r 2D S21S ]S

]r D 2G r 2dr1
R2

2g
@S~R!2S0#2,

~7!

where the factor 4p comes from the integration over the un
sphere. Variation of energy~7! results in the Euler-Lagrang
equation forS(r ) in the bulk,

]2S

]r 2
1

2

r

]S

]r
2S 11

6

r 2D S50, ~8!

and in the mixed boundary condition

]S

]r U
r 5R

2
1

g
@S~R!2S0#50. ~9!

These equations are also directly derivable from Eqs.~5! and
~6!. The solution of the bulk equation~8! can be given in
closed form:

S~r !5S0A21~R,g!
exp@2~r 2R!#

r S 11
3

r
1

3

r 2D ,

~10!

where the factor

A~R,g!5
g11

R
1

4g13

R2
1

9g13

R3
1

9g

R4
~11!

is determined by the boundary condition~9!.
We are prepared to implement our geometric view on

two-particle interaction. It does not try to find a smoo
alignment tensor field between two particles but rather e
ploys the one-particle properties. When the coronas of
particles overlap, the orientational order from particle 1
the half spaceV2 1 S2 on the right of the midplaneM ~see
Fig. 2! is removed. The equivalent is valid for particle 2. A

FIG. 2. Explanation of the geometry. Two spherical particles
and 2 with a separationd occupy regionsSi ( i 51,2) with surfaces
]Si . The region bounded by the midplaneM and the surfaceSi is

denotedVi . The unit vectorn̂2 is normal toM. The spherical coor-
dinatesr andq are chosen relative to the center ofS1 and the line
connectingS1 andS2.
5-2
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approximation to the interaction energy is then the free
ergy of the removed orientational order which amounts t

Fint
(1)522E

V21S2

@~Qi j
(1)!21~¹kQi j

(1)!2#d3r , ~12!

where Q(1)(r) is the alignment tensor field of particle 1
Transforming (Qi j

(1))2 with the help of the bulk Euler-
Lagrange equation~5! into Qi j

(1)
“

2Qi j
(1) and performing a

partial integration~Green’s first identity@29#!, we arrive at an
equivalent expression which involves a surface integra
over the midplane:

Fint
(1)522E

M
Qi j

(1)n̂2•“Qi j
(1)d2r . ~13!

The unit vectorn̂2 is illustrated in Fig. 2. To calculate th
interaction energy from Eq.~12!, we insert the uniaxial
alignment tensor of Eq.~1! with the specifications for one
particle @n5er and S5S(r )] and arrive at the same fre
energy density as Eq.~7!. However, the integration limits
have to be adjusted to the half spaceV21S2, i.e., r
P@d/2 cosq,`) andqP@0,p/2#. For the scalar order param
eter profileS(r ) of Eq. ~10!, the integration can be don
analytically with the final result,

Fint
(1)

6p
52S S0

A D 2 exp@2~d22R!#

d S 11
6

d
1

12

d2D 2

. ~14!

For particle radii much larger thanjN (R@1) which implies
d@1, the interaction energy is of the Yukawa type:

Fint
(1)

6p
'2S S0

A D 2 exp@2~d22R!#

d
. ~15!

This form agrees with the exact result of Galatola a
Fournier derived in the limit ofd22R@1 @24#. The strength
of our interaction, however, is smaller, by a factor of 2 whi
is due to the choice of the alignment tensor field consist
of one-particle fields clued together at the midplane. Nev
theless, the advantage of our approach consists in its sim
ity and its semiquantitative agreement, which implies that
idea of removing the overlapping parts of the nematic co
nas describes the main feature of this interaction even
distances to contact ofd22R'jN . Note that in Ref.@25#,
the Yukawa interaction was demonstrated to be a good
proximation down tod22R'jN for particle radii of R
@1.

To achieve a better understanding of the factor 2, we h
performed an alternative derivation of the interaction pot
tial by approximating the alignment tensor field around t
particles by a linear superposition of the two one-parti
solutionsQ( i )(r) centered on particles 1 and 2,

Q~r!5Q(1)~r!1Q(2)~r!. ~16!

The fieldQ(r) solves the bulk Euler-Lagrange equation~5!.
The boundary condition~6!, however, is satisfactorily ful-
filled only in the limit of d22R@1 since then, e.g.,Q(1)(r)
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has nearly decayed to zero at the location of particle 2.
usual, the interaction energy is defined by

Fint
(2)5F@Q(1)~r!1Q(2)~r!#22FS@Q( i )~r!#, ~17!

whereFS denotes the self-energy of one particle. To evalu
Fint

(2) , we can also integrate twice over the volumeV2 ~see
Fig. 2! due to the symmetry of the problem. Applying th
Euler-Lagrange equations~5! and ~6! and performing a par-
tial integration~Green’s first identity@29#!, we arrive at

Fint
(2)524E

M
Qi j

(2)n̂2•“Qi j
(1)d2r

12E
]S2

F1

g
~Qi j

(1)!22Qi j
(1)n̂•“Qi j

(1)Gd2r . ~18!

The second integral over the surface]S2 of sphere 2 gives a
higher-order correction to the Yukawa potential and can
neglected. The first surface integral is similar to Eq.~13!,
however, the factor 2 is replaced by 4 and instead
Qi j

(1)n̂2•“Qi j
(1) the integrand contains bothQi j

(1) andQi j
(2) . If

our order parameter were just a scalar fieldF(r), then, by
definition,F (1)(r)5F (2)(r) on the midplaneM, and the ap-
proximation of linear superposition reproduces exactly tw
the interaction energy of our geometric view. For a tenso
order parameter, however,Q(1)(r)ÞQ(2)(r) on the midplane
since the alignment tensor possesses an orientation in s
that differs from particle 1 to 2. To verify the factor 2 in th
case, all we can do is to evaluate the first integral in Eq.~18!
explicitly, which needs some effort since several delic
steps including the application of differential geometry ha
to be performed. After performing the integration, one
rives at an analytic expression which contains the expon
tial integral functionE1(d) @30#. Using its Laurent expansion
@30#

E1~d!edd5 (
n50

`

~21!nn!/dn, ~19!

we finally derive the relationFint
(2)52Fint

(1) @for Fint
(1) , see Eq.

~15!# which reproduces the result of Galatola and Fourn
@24# and which we already predicted in the scalar case.

In the end, we note that the two-particle interaction f
electrostatically stabilized colloids in the Debye-Hu¨ckel ap-
proximation with the Debye screening lengthk21 as the
characteristic length scale can be investigated by the s
type of bulk free energy as in Eq.~4!. However,Q(r) is
replaced by the scalar fieldF(r) of the electrostatic poten
tial, and the surface free energy now reads 2s*Fd2r , where
s is a reduced surface charge density@31#. Variation of such
a free energy reproduces the linearized Poisson-Boltzm
equation for a 1:1 electrolyte together with the von Neuma
boundary condition. The two-particle interaction energy c
be written in analogy to Eq.~18!. It contains an additiona
surface term due to the different boundary condition wh
renders the two particle interaction repulsive.
5-3
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In conclusion, we have demonstrated that the geome
view of removing the overlapping parts of nematic coron
around particles reproduces the Yukawa type two-particle
teraction in a semiquantitative manner. This idea thus hi
lights the main feature of the new colloidal interaction m
diated by surface-induced nematic order. In addition,
derived the exact form of the Yukawa interaction on the ba
of the approximation of linear superposition reproducing
an alternative manner the result by Galatola and Four
@24#. The advantage of our geometric view lies in its simpl
ce

y

d

a

y
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ity. Using a type of Voronoi cell construction, it is extensib
to multibody interactions which are important in the study
particle aggregation and the formation of ordered crystall
structures. Phase ordering studies due to particle interact
mediated by the scalar order parameter field of binary liqu
were already presented by Lo¨wen @17# and Netz@18#.
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