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Geometric view on colloidal interactions above the nematic-isotropic phase transition

Holger Stark
Fachbereich Physik, Universitd&onstanz, D-78457 Konstanz, Germany
(Received 15 March 2002; published 30 October 2002

Particles dispersed in a liquid crystal above the nematic-isotropic phase transition are surrounded by a
surface-induced nematic wetting layer. When the nematic coronas of two particles overlap, they experience a
strong attraction since the volume of nematic ordering and therefore the free energy is reduced. For normal
anchoring of the liquid-crystal molecules on the particles’ surfaces, we demonstrate that the implementation of
this geometric view reproduces the Yukawa interaction derived by Galatola and Fournier in a recent paper
[Phys. Rev. Lett86, 3915(2001], however with half the strength. To understand the factor 2, we rederive the
Yukawa potential with the approximation of linear superposition of two one-particle profiles. At the end, we
comment on the similarities of our approach to the screened electrostatic interaction of charged colloids.
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In recent years, dispersions of colloidal particles in a nemand by Borgnik, Stark, and Zimer who modeled the orien-
atic liquid crystal have attracted considerable attention, sinctational order between two micron-sized particles with the
new and interesting phenomena arise through the combindelp of ansatz functionf21]. Borgnik et al. demonstrated
tion of colloidal suspensions and anisotropic flulds-5|.  that the range of the dominating attractive part is easily tun-
The one-particle properties, central for the understanding okble by temperature. This feature offers the possibility of
this new soft-matter system, are determined by the orientdnducing flocculation close to the nematic-isotropic phase
tional order around a single particle that exhibits topologicaltransition in an otherwise stabilized colloidal systgza]. A
point and line defects. Three characteristic configurationdirst experimental verification of the attractive interaction
(dipole, Saturn ring, and surface ring] and their response With the help of an atomic force microscope is due to &oc
to external field$7] were identified theoretically and verified var et al. [23]. Galatola and Fournier, on the other hand,
experimentally. With the calculation of the Stokes drag, dy-developed a combined analytical and numerical approach
namic properties came into foc(i8]. Elastic distortions in  with which they predicted that colloidal dispersions of par-
the nematic order mediate two-particle interactions of dipolaticles whose size is of the order & are solely stabilized by
or quadrupolar typé¢1,9]. They lead to prominent structure the repulsive componeri24]. In addition, they showed by
formation involving chaining[10], gel-like ordering with  analytical means that the two-particle interaction assumes the
viscoelastic propertigl 1], and even ordered structurfg®]. ~ form of a Yukawa potential for particle separations much
A numerical method to simulate several particles in a nemlarger thanéy [24,25.
atic host was developdd 3] and cluster formation was pre- In this paper, we concentrate on particle sizes much larger
dicted[14]. than &y . We quantify the geometric view that the overlap-

This paper addresses colloidal interactions in a liquiding of the nematic coronas of two particles leads to a strong
crystal solvent above the nematic-isotropic phase transitioattraction since the total volume of nematic ordering and
at temperaturd .. Bounding surfaces induce nematic ordertherefore the free energy is reduced. This idea, which has
that decays to zero in the bulk on a length scale determinesome resemblance to the origin of depletion forces in con-
by the nematic coherence lengif [15]. When the surface- ventional colloidal suspensiof27], leads to an interaction
induced nematic wetting layers of two parallel plates over-potential of Yukawa type, however, with half the strength
lap, they are strongly attracted to each otfi8] since the compared to the result of R¢24]. To interpret the factor 2,
volume of the energetically unfavorable liquid-crystal order-
ing is reduced. In this paper, we always assume normal an-
choring of the liquid crystal molecules on a bounding sur-

|
|
face. Applying the mechanism just introduced to the nematic
coronas of spherical particles, we obtain a different colloidal EJN
interaction(see Fig. L It also possesses a repulsive contri-
bution due to the elastic distortions of the director field con- ;
|

necting the particles. Our problem bears analogy to the treat-
ment of interaction potentials in a binary liquid composed of
A andB components with particles wetted, e.g., by #fech

liquid phase[17-19. Colloidal interactions in a liquid- FIG. 1. The overlapping of the two nematic coronas of thickness
crystal solvent abovel, were simultaneously studied by ¢ induces a strong attractive interaction between the partities
Galatola and Fournier based on a numerical appr¢abh |iquid-crystal molecules are normally anchored on the particles’ sur-
faces. In the geometric view, the negative of the free energy of the
excess orientational order in the dark shaded region is the interac-
*Email address: Holger.Stark@uni-konstanz.de tion energy. For an exact definition, see EtR).
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we rederive the Yukawa potential with the help of the ap- v M
proximation of linear superposition well known in connec- 1 , Va as
tion with the Debye-Hakel approximation for electrostati- 5 | 2
cally stabilized colloids on which we shortly comment at the S T @
end[26]. asy G .
We describe the orientational order of the constituent rod- dr2 | a2
like organic molecules of a liquid-crystal by the symmetric
and traceless second-rank alignment tei@adn the uniaxial FIG. 2. Explanation of the geometry. Two spherical particles 1

case, i.e., when all molecules align on average along the un@nd 2 with a separatiod occupy regionsS; (i=1,2) with surfaces

vectorn called director, the alignment tensor takes the form?Si - The region bounded by the midplaheand the surfacé; is
denoteaV; . The unit vectorv, is normal toM. The spherical coor-

3 1 dinatesr and 9 are chosen relative to the center®fand the line

Qjj :§S< nin;— §5ij ) ; (1) connectings, ands,.

where §;; is the Kronecker delta. We have introduced theboundary condition and the symmetry of the system, we
Maier-Saupe order paramet8ito signify the degree of ori- choose the uniaxial alignment tensor of EJ) with S
entational order. For weak surface-induced nematic ordering=S(r) andn=g,, wherer is the distance from the center of
in the isotropic phase, it is sufficient to employ the the particle andg is a unit vector pointing along the radial
Landau—de Gennes free energy density in the harmonic aglirection. With such an alignment tensor, the total free en-

proximation, ergy is
fo=[ao(T=T*)Q}+L(%Qi)?/2, @ F 1 6|, (052, R ,
4—=§J' 1+—2 S+ E r dr+2—[S(R)—SO] ,
whereV indicates partial derivative with regard ¥, and & r Y

Einstein’s summation convention over repeated indices is v

. . N )
employed. In the Isotropic phasE>T ’ a'nd the f'rSF and where the factor 4 comes from the integration over the unit
second term on the right-hand side quantify, respectively, th'§phere. Variation of energyf) results in the Euler-Lagrange
free energy to create or distort the orientational order. F%quation fors(r) in the bulk

simplicity, we assume the one-constant approximation for the
elastic terms. To model the anchoring of the liquid-crystal

. ?S 2 9S 6
molecules at the surface of a particle, we use the surface free — 4+ - —=—|1+—]s=0, (8)
energy density28], grz ror r2
fs=W(Q;—Q{M)?/2. (3)  and in the mixed boundary condition
In the following we assume that the particles favor uniaxial S 1
o O _3g (57 |  —Z[S(R)—S]=0. €)
order along the surface normal, i.e., Qj’=3Sy(viv; a | _o

—%6”). If we write all lengths in units of the nematic co-
herence lengti¥y= VL/[ao(T—T*)] and introduce the sur- These equations are also directly derivable from Egjsand
face coupling parametey=L/(W&), the reduced free en- (6). The solution of the bulk equatiof8) can be given in

ergy in units ofL &\/2 reads closed form:
1 exd —(r—R 3 3
FlQ(n]= f [Qf +(WQi)?1d%r + ;f (Qij— Qi) d?r. S(r)=SA (R, y>y( 1+ o+ —2> :
r
4 (10)
Its variation leads to the Euler-Lagrange equation in the bU|kwhere the factor
V0. =0 5
Q= ® _y+1l 4y+3 9y+3 9y
and to the mixed boundary condition ARy)=—F(7+ R2 + R3 + = 1D
A 1 ; : s
VO, + =(Q:—0®) =0, 6 is determined by the boundary conditi(®).
v VQi Y(Q" Qi) © We are prepared to implement our geometric view on the

A two-particle interaction. It does not try to find a smooth
where v points towards the center of a spherical particle. Inalignment tensor field between two particles but rather em-
performing the variation, we implied th& is already cho- ploys the one-particle properties. When the coronas of two
sen symmetric and traceless. particles overlap, the orientational order from particle 1 in

One spherical particle of radiuR carries a corona of the half spacd/, + S, on the right of the midplan& (see
surface-induced nematic order. In accordance with théig. 2) is removed. The equivalent is valid for particle 2. An
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approximation to the interaction energy is then the free enhas nearly decayed to zero at the location of particle 2. As
ergy of the removed orientational order which amounts to usual, the interaction energy is defined by

int ™

Fm_‘va2+sz[(Qi‘;1)>2+(kai(ﬁ))Z]dSr, (12 Fit=FIQY(0+QP(M1-2Fd QU] (17

. . . . whereF 5 denotes the self-energy of one particle. To evaluate
(1) S
where Q'*)(r) is the alignment tensor field of particle 1. F() we can also integrate twice over the voluMe (see

i (N2 i _ int 1
Transforming Q;)” with the help of the bulk Euler- o 5 46 1o the symmetry of the problem. Applying the

Lagrange equatior5) into Q{P'V2Q{! and performing a Euler-Lagrange equatior(§) and (6) and performing a par-
partial integratior(Green'’s first identity 29]), we arrive atan g integration(Green’s first identity[29]), we arrive at
equivalent expression which involves a surface integration
over the midplane:

FiR=—a| o, Vo
Finl= —ZJMQi(jl)szQi(jl)dzr. (13

+2 f [3<Q§,-”>2—Q&1’3-VQ&“ d’r. (18
The unit vectorr, is illustrated in Fig. 2. To calculate the LY
interaction energy from Eq(12), we insert the uniaxial ) )
alignment tensor of Eq(1) with the specifications for one The second integral over the surfai®, of sphere 2 gives a
particle [n=e, and S=S(r)] and arrive at the same free higher-order corr_ectlon to thg Yukawa} po'ter.mal and can be
energy density as Ed7). However, the integration limits neglected. The first surface integral is similar to ER),
have to be adjusted to the half spave+S,, ie., r howgver, the factor 2 is replaced by 4 and instead of
e[d/2 cos®,¢) and 9 e [0,7/2]. For the scalar order param- Q{V1,- VQ{" the integrand contains bo{ andQ{?. If
eter profileS(r) of Eg. (10), the integration can be done our order parameter were just a scalar fididr), then, by
analytically with the final resuilt, definition, ®)(r)=®?@)(r) on the midplanav, and the ap-

) proximation of linear superposition reproduces exactly twice

Sy 6 12 the interaction energy of our geometric view. For a tensorial
A 1+5+ E) - (14 order parameter, howeve™(r) + Q(r) on the midplane
since the alignment tensor possesses an orientation in space
that differs from particle 1 to 2. To verify the factor 2 in this
case, all we can do is to evaluate the first integral in(E8)
explicitly, which needs some effort since several delicate
F) (so)zexp[—(d—ZR)] steps including the application of differential geometry have

Fix

int

6

2exg —(d—2R)]
d

For particle radii much larger thagy (R>1) which implies
d>1, the interaction energy is of the Yukawa type:

=~ A d (15  to be performed. After performing the integration, one ar-

6w . . . i :
rives at an analytic expression which contains the exponen-
This form agrees with the exact result of Galatola andtial integral functionE, (d) [30]. Using its Laurent expansion

Fournier derived in the limit ol — 2R>1 [24]. The strength

of our interaction, however, is smaller, by a factor of 2 which

is due to the choice of the alignment tensor field consisting g - N N

of one-particle fields clued together at the midplane. Never- Ei(d)e d:nZO (=1)"nl/d", (19
theless, the advantage of our approach consists in its simplic- N

ity and its semiquantitative agreement, which implies that the . .
ic}lea of removir?g the overlagping parts of the ngmatic coroV€ f'”a")/ derive the relat'O'Fi(r%t)ZZFi(r}t) [for Ff%g see Eq. )
nas describes the main feature of this interaction even foft2] Which reproduces the result of Galatola and Fournier
distances to contact af— 2R~ ¢, . Note that in Ref[25], 24] and which we already predicted in the sc_:alar case.

the Yukawa interaction was demonstrated to be a good ap- " the end, we note that the two-particle interaction for
proximation down tod— 2R~ ¢, for particle radii of R elect_rostgtlcally stabilized colloids m.the Debygdkel ap-
>1. proximation with the Debye screening lengih ! as the

To achieve a better understanding of the factor 2, we hav&haracteristic length scale can be investigated by the same

performed an alternative derivation of the interaction potentYP® Of bulk free energy as in Ed4). However, Q(r) is
tial by approximating the alignment tensor field around two'€Placed by the scalar fiel#(r) of the electrostatic poten-

2
particles by a linear superposition of the two one-particlelid: @nd the surface free energy now reads'@d°r, where

solutionsQ™M(r) centered on particles 1 and 2, o is a reduced surface charge d_en@&g]. Varigtion of such
a free energy reproduces the linearized Poisson-Boltzmann

Q(r)=QW(r)+Q3)(r). (16) equation for a 1:1 electrolyte together with the von Neumann
boundary condition. The two-particle interaction energy can
The fieldQ(r) solves the bulk Euler-Lagrange equatic. be written in analogy to Eq18). It contains an additional
The boundary conditiori6), however, is satisfactorily ful- surface term due to the different boundary condition which
filled only in the limit of d—2R>1 since then, e.gQ™)(r) renders the two particle interaction repulsive.

041705-3



HOLGER STARK PHYSICAL REVIEW E66, 041705 (2002

In conclusion, we have demonstrated that the geometritty. Using a type of Voronoi cell construction, it is extensible
view of removing the overlapping parts of nematic coronago multibody interactions which are important in the study of
around particles reproduces the Yukawa type two-particle inParticle aggregation and the formation of ordered crystalline
teraction in a semiquantitative manner. This idea thus high§tructures. Phase ordering studies due to particle interactions

lights the main feature of the new colloidal interaction me_medlated by the scalar order parameter field of binary liquids

_ ) ) " were already presented by wen[17] and Netz[18].
diated by surface-induced nematic order. In addition, we

derived the exact form of the Yukawa interaction on the basis The author thanks J.-B. Fournier, D. Frenkel, P. Galatola,
of the approximation of linear superposition reproducing inH- H. von Grinberg, R. B. Meyer, G. Ngele, and E. Trizac

an alternative manner the result by Galatola and Fourniefo" hfelpfulr?islgussiorrl]s. 'F"e alio acknowle;dger? ffinangial éUp'
. . port from the Deutsche Forschungsgemeinschaft under Grant
[24]. The advantage of our geometric view lies in its simplic No. Sta 352/5-1.
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