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Abstract. – We present a numerical calculation for the Stokes drag of a particle in a nematic
solvent. Due to the radial anchoring of the molecules at the particle surface and a uniform
director field at infinity, the particle is accompanied by a hyperbolic point defect which gives
rise to the so-called dipole configuration. We write the Ericksen-Leslie equation in a reduced
form emphasizing the importance of the Ericksen number Er. Due to the coupling between
director and velocity field, we find a highly non-linear Stokes drag. We discuss it in terms of
an effective viscosity and as a function of Er. Director field and stream line patterns add to
the understanding of our results. Finally, we suggest that the non-linear Stokes drag should be
observable in a falling-ball experiment.

A particle of radius a moving with velocity v0 in an isotropic fluid of shear viscosity η
experiences the well-known Stokes drag force, FS = 6πηav0 [1]. This force serves as a starting
point for dealing with such interesting phenomena as the Brownian motion [1] of dispersed
particles and the long-time tail in their velocity autocorrelation functions [2] or the so-called
hydrodynamic interactions between moving particles [1, 3].

One could ask the question what causes the Stokes drag to depend in a non-linear fashion
on the particle velocity. Such a case occurs as soon as the non-linear convective term in the
Navier-Stokes equations cannot be neglected, i.e., when the Reynolds number Re, which is
defined as the ratio of viscous and inertial forces in the fluid, is of the order of one [4]. A
famous example is a moving rigid body which induces turbulent flow in the surrounding fluid.
As a result, the drag force depends on the square of the velocity, an effect well studied in
car industry. A second possibility arises from deformable bodies whose shape reacts on the
flow of the surrounding fluid [5]. The behavior of “soft spheres” under the influence of shear
flow ranging from liquid droplets and fluid vesicles to elastic capsules and inert ellipsoids is
well-studied with the interest of modeling, e.g., red-blood cells.

In this article we study the Stokes drag of a rigid spherical particle suspended in a complex
fluid, which in our case is a nematic liquid crystal. In such a phase, rodlike organic molecules
align on average along a common direction indicated by a unit vector n called director.
Through the coupling between the director and the velocity field, the Stokes drag is driven
non-linear.
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Fig. 1 – The dipole configuration of a sperical particle in a nematic solvent. At the particle surface
a rigid radial anchoring of the molecules is chosen. At infinity the director points along the vertical
direction. Due to topological constraints, the particle is accompanied by a hyperbolic point defect.

Stimulated by recent experiments on dispersions of particles in a nematic environment [6–
8], which gave rise to the study of interesting collective phenomena [9,10], there are a number
of articles addressing the director configuration around a single particle [6,11–13]. A complete
list is given in ref. [14]. Here we concentrate on the dipolar configuration: a particle with rigid
perpendicular anchoring of the liquid crystal molecules at its surface and uniform alignment
at infinity is accompanied by a hyperbolic point defect in the director field to guarantee
topological charge conservation as illustrated in fig. 1. This configuration is realized for
sufficiently large particles [12,13].

The Stokes drag in liquid crystal solvents has some history whose experimental and theoret-
ical work is reviewed in refs. [14,15]. Early experiments in nematic liquid crystals determined
the temperature and pressure dependence of an effective viscosity ηeff in the Stokes drag [16].
Poulin et al. used it to measure the dipolar interaction between particles surrounded by the
dipole configuration of the director field [17]. Ruhwandl and Terentjev performed numerical
calculations of the Stokes drag for the Saturn-ring configuration where the particle is sur-
rounded by a disclination ring at its equator [18]. The calculations were done for low Ericksen
numbers Er, which means that the elastic deformation forces in the director field largely ex-
ceed the viscous forces in the fluid so that the director field is not affected by the flow field.
This approximation considerably reduces the complexity of the problem. In the same limit,
Stark and Ventzki extended the calculations to the dipole configuration and compared their
results to the Saturn ring configuration and a uniform director field [15]. In all three cases
the overall symmetry of the systems is uniaxial. Hence, the Stokes drag is generalized to
FS = γv0, where γ is a tensor with only two independent friction coefficients γ‖ and γ⊥ for
respective motions parallel and perpendicular to the symmetry axis. Chono and Tsuji studied
the velocity and director field around a cylinder for arbitrary Ericksen numbers [19]. However,
for radial anchoring their director fields did not exhibit any topological defects required by
the boundary conditions. Finally, Billeter and Pelcovits used molecular dynamics simulations
to determine the Stokes drag of very small particles [20], and they observed that the Saturn
ring is strongly deformed due to the motion of the particles.

In this article we perform a numerical study of the Stokes drag when the particle is moving
along the symmetry axis of the dipolar configuration. We solve the full Ericksen-Leslie equa-
tions which describe the dynamics of a nematic liquid crystal [21, 22]. We will demonstrate
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that the coupling between velocity and director field renders the Stokes drag highly non-linear.
It crucially depends on whether the particle moves against the hyperbolic defect or leaves it
behind. We will clarify the reason for such a behavior.

To calculate the Stokes drag, we consider the equivalent problem of determining the flow
and director field around a particle at rest where we denote the uniform velocity at infinity
by v∞. Our problem is stationary (∂v/∂t = ∂n/∂t = 0), we consider an imcompressible fluid
(divv = 0), and restrict ourselves to small Reynolds numbers Re. By referring lengths and
velocities to the radius a of the particle and to v∞, respectively, the momentun balance of the
Ericksen-Leslie equations reads [21,22]

−∇ip + ∇j(T 0
ij + Er T ′

ij) = 0 , (1)

where ∇i means partial derivative ∂/∂xi. The symbol T 0
ij stands for the rescaled elastic

contribution to the stress tensor originating in deformations of the director field. It obeys the
general formula, T 0

ij = −(∂fb/∂∇jnk)∇ink, where fb denotes the Frank free energy of the
director deformations. In the one-constant approximation (fb = (∇inj)2/2), employed in the
following, the elastic stress tensor reduces to T 0

ij = −∇jnk∇ink. The average Frank elastic
constant K, normally appearing in the Frank free energy, is subsumed into the Ericksen
number [23] which is a measure for the ratio of viscous to elastic forces in the momentum
balance. The quantity α4 stands for one of the Leslie viscosities appearing in the viscous
stress tensor of eq. (1),

T ′
ij = α1ninjnknlAkl + α2njNi + α3niNj + 2Aij + α5njnkAik + α6ninkAjk . (2)

Note that in eq. (2) the Leslie viscosities αi are given in units of α4/2, which becomes the
conventional shear viscosity of an isotropic liquid when all other Leslie viscosities are zero.
The viscous stress tensor T ′

ij couples the director field to the symmetrized velocity gradient,
Aij = (∇ivj + ∇jvi)/2, and to the rate of change of the director relative to a fluid vortex,
N = ∂n/∂t + v · ∇n − curlv × n/2, where in the stationary case ∂n/∂t = 0. Finally, the
reduced hydrodynamic pressure p is given in units of K/a2.

The second part of the Ericksen-Leslie equations, written in reduced form as

n × (h0 − Er h′) = 0 , (3)

balances the torques on the local director, where the cross product n× ensures that n remains
a unit vector. The torques consist of an elastic contribution, h0

i = ∇j(∂fb/∂∇jni)−∂fb/∂ni =
∇2ni, where in the second equality the one-constant approximation has been employed, and
a viscous part, h′

i = γ1Ni +γ2Aijnj . Here, the γi are given in units of α4/2. The coefficient γ1

denotes a true rotational viscosity of the director motion. It contributes to the viscous torque
even in the stationary case whenever ∇n �= 0. Onsager relations require γ1 = α3 − α2 and
γ2 = α2 + α3 = α6 − α5 [21, 22]. In our numerical calculations the Leslie viscosities of 5CB
were used.

Finally, once the velocity and director field are known, the Stokes drag parallel to the
symmetry axis of the dipole configuration is calculated with the help of the dissipated energy
per unit time [18,22,24,25]: F

‖
S v∞ =

∫
(T ′

ijAij + h′
iNi) d3r. Note that a non-uniform director

field contributes to the dynamic variable N through the convective term v ·∇n and therefore
to the dissipated energy and the Stokes drag.

We add two comments. First, the divergence of the elastic stress tensor, ∇jT
0
ij , in eq. (1)

contains the gradient of n to the third power. Close to the hyperbolic point defect in the
dipole configuration of fig. 1, ∇inj diverges as 1/∆x, where ∆x � 1 is the grid constant
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in our numerical treatment. Therefore, ∇jT
0
ij ∝ 1/∆x3 becomes very large. We observed

that this rendered our numerical approach unstable. To overcome the problem, we used
instead ∇jT

0
ij = −∇ifb + h′

j(∇inj), whose derivation in the static case can be found in
ref. [22]. Its extension to the dynamic case is straightforward. The term ∇ifb just rescales
the hydrodynamic pressure. The remaining term h′

j(∇inj) only diverges as 1/∆x2. After this
replacement, our program was stable.

Secondly, from eq. (3) one concludes that for small Ericksen numbers the change of the
director field relative to its static value scales as δn ∝ Er. This suggests the approximation
that for Er → 0 the director field is held fixed and only the momentum balance (1) is solved
which was pursued in refs. [15, 18]. However, an inspection reveals that the change of the
stress tensor T 0

ij due to δn scales as Er for an inhomogeneous director field. It is therefore
of the same order as the viscous stress tensor, and strictly cannot be neglected. Nevertheless,
our results in this paper support the approximation, since for Er → 0 we reproduce the result
from ref. [15].

We shortly summarize the numerical solution of eqs. (1) and (3) together with the incom-
pressibility condition divv = 0. Details can be found in ref. [15], where the case of low Ericksen
numbers is treated. We map the infinite space around a particle of reduced radius one onto
the unit sphere by employing modified spherical coordinates with a radial coordinate ξ = 1/r,
where r is the conventional radial distance. Furthermore, the velocity and director fields are
expressed in the local spherical coordinate basis attached to each space point. Due to the ro-
tational symmetry of the dipole configuration around the z-axis, all quantities do not depend
on the azimuthal angle φ, and the director and velocity fields are situated in the symmetry
planes through the z-axis. As explained in ref. [15], the incompressibility condition is treated
via the method of artificial compressibility. The momentum balance equation is relaxed into
its stationary solution via the Newton-Gauss-Seidel method obeying the following boundary
conditions for the velocity and pressure fields. At infinity, p = 0 and v∞ points along the
z-axis. At the particle surface, we use the non-slip condition v(ρ = 1) = 0. Due to the
symmetry of our problem, the torques in eq. (3) can only point along the azimuthal direction
perpendicular to the symmetry planes of the dipole configuration. Formula (3) then provides
an equation for the tilt angle Θ which parametrizes the director field. It is numerically solved
via a Newton-Gauss-Seidel relaxation. As starting field, we employ a static solution of eq. (3).
The boundary conditions require the director field to point along the z-axis at infinity and in
radial direction at the particle surface.

We now discuss our results for the Stokes drag along the symmetry axis of the dipole
configuration. In fig. 2, the Ericksen number Er ∝ v∞ is the abscissa coordinate, where
Er > 0 means flow from below, and Er < 0 means flow from above, as indicated by the inset
in fig. 2. The upper curve gives the distance rd of the hyperbolic point defect from the center
of the sphere in units of the particle radius a. When the fluid flows from above (Er < 0),
the defect is slightly pulled towards the sphere, and the distance rd/a changes from 1.26 at
Er = 0 to 1.13 at Er = −30. On the other hand, for Er > 0 the defect very strongly moves
away from the sphere reaching rd/a = 3.04 at Er = 11. In the lower curve, we plot the Stokes
drag F

‖
S in terms of the effective viscosity η

‖
eff = F

‖
S /(6πav∞). It exhibits a corresponding

behavior to rd. For Er < 0, it decreases slightly from 0.48 poise at Er = 0 to 0.42 poise at
Er = −30, whereas a strong increase occurs for Er > 0. Thus, the Stokes drag in a nematic
environment is not only anisotropic, as studied in refs. [15,18], in addition it behaves strongly
non-linearly. Furthermore, its magnitude crucially depends on whether the fluid first flows
against the sphere (Er < 0) or against the point defect (Er > 0). Such a behavior is only
possible through the coupling between the velocity and the director field. It is due to the
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Fig. 2 – The distance rd of the hyperbolic point defect from the center of the sphere and the ef-
fective viscosity η

‖
eff of the Stokes drag F

‖
S as a function of the Ericksen number Er for the dipole

configuration. Er < 0 and Er > 0 mean flow from above or below, respectively.

Fig. 3 – Director field patterns of the dipole configuration for the static case (Er � 1, right, shaded
part) and for Er = −30 (left part).

fact that the torque balance equation (3) is not invariant under v → −v. In a static dipole
configuration (Er → 0) it therefore cannot occur. We stress that the defect is not a solid
object. Thus, the intuitive argument that the defect should be pushed against the particle for
Er > 0 does not work here. The motion of the defect is determined by the non-trivial solution
of the torque equation (3), therefore a simple explanation for the motion is not obvious.

<< 1ErEr = 10

Fig. 4
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Fig. 4 – Director field patterns of the dipole configuration for the static case (Er � 1, right, shaded
part) and for Er = 10 (left part).

Fig. 5 – Stream line patterns of the dipole configuration for the static case (Er � 1, right, shaded
part) and for Er = 10 (left part).
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To improve our insight into the non-linear Stokes drag, we study the director and velocity
field lines. In fig. 3 we compare the director field lines for Er = −30 (left part) to the static
case for Er � 1 (right, shaded part). It is clearly visible that for Er = −30 the distance of
the defect to the particle surface has decreased by a factor of two. As a result, strong director
deformations occur closer to the particle. Compared to the static director field, the field
lines for Er = −30 are straightened along the vertical direction due to flow alignment. The
effective viscosity for Er = −30 is reduced since the volume with a non-vanishing convective
term v · ∇n, which contributes to the dissipated energy through the dynamic variable N , is
reduced. On the other hand, when the defect moves away from the particle for Er > 0, the
strong director distortions have to extend much further away from the particle, as illustrated
in fig. 4 (left part) for Er = 10 preventing flow alignment close to the particle. The volume
with a non-vanishing v ·∇n increases strongly, and so does the effective viscosity. Finally, in
fig. 5 we compare the velocity field lines for Er = 10 (left part) and Er � 1 (right, shaded
part). Strong changes are only visible in the region where the defect has moved. Interestingly,
the field lines first bend towards the symmetry axis when moving along the z-axis. The field
lines are not completely smooth in this region which we attribute to the grid which becomes
coarser with increasing distance from the sphere.

The reported non-linear Stokes drag should be observable in a falling-ball experiment [16],
where the particle moves in a nematic solvent under the influence of gravity. Balancing the
gravitational, the buoyancy, and Stokes’s friction force, one arrives at a particle velocity of
v0 = 2(
 − 
fl)a2g/(9ηeff), where 
 and 
fl ≈ 1 g/cm3 are the respective mass densities of the
particle and the surrounding fluid, and g is the gravitational acceleration. For latex particles
(
 − 
fl = 0.01 g/cm3), the resulting Ericksen number is much smaller than one. However, if
one takes gold particles with 
 = 19.3 g/cm3 [26], one arrives at v0 = 100µm/s for particles
of radius a = 10µm and ηeff = 0.5 poise, which corresponds to Er = 5 if K = 10−6 dyn is
employed. Variations in the particle radius then lead to the range of Ericksen numbers studied
in this article. Furthermore, in recent beautiful observations of Saturn-ring configurations,
Gu and Abbott used a special treatment of the gold surface of their particles to realize the
required radial anchoring for the molecules [8].

To conclude, we have presented a numerical study of the Stokes drag for a particle in a
nematic solvent surrounded by the dipole configuration. To implement the Ericksen-Leslie
equations on the computer, we have formulated them in a scaled version which emphasizes
the importance of the Ericksen number. We find a highly non-linear Stokes drag, which is the
first example of such a behavior in colloidal science we know of. A falling-ball experiment is
suggested to confirm our findings. It is possible that the hyperbolic defect becomes unstable
for large positive Ericksen numbers and opens up to form a Saturn ring as predicted for high
magnetic or electric fields [13]. However, due to a “numerical pinning” of the defect ring we are
not able to verify this effect in a director theory [13]. An approach using the alignment tensor
would clarify this question [27]. Further investigations are directed towards the Brownian
motion for such a highly non-linear Stokes drag. Our findings might also be relevant for the
interpretation of rheological studies on particle gels in a nematic solvent [9].
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