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Shear modulus of two-dimensional colloidal crystals
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Abstract. – A new method for the determination of elastic constants of colloidal systems is
described. We study super-paramagnetic microspheres confined by gravity to a two-dimensional
layer at a water-air interface. Under an external vertical magnetic field the particles arrange in
a crystalline triangular phase because of the repulsive dipole-dipole interaction. By use of an
optical tweezer, one triangle formed by three spheres is rotated from its equilibrium position
and the relaxation time measured using video-microscopy. We demonstrate that this time is
directly related to the shear modulus µ of the crystal and study µ as a function of the magnetic
particle interaction strength.

During the last decades the interest in colloidal systems has grown tremendously because of
their widespread technological applications and due to the availability of precisely calibrated
particles used as model systems in “classical” condensed-matter physics [1]. The crystallization
of colloids, both in two and three dimensions (2D and 3D), has been a continuous matter of
particular interest. The research mostly focused on the analysis of structure and dynamics of
colloidal systems on different length and time scales through static or dynamic light scattering
techniques.

Elastic constants of colloidal crystals —essentially the shear modulus µ— were determined
from the shear-induced resonance of the crystal through light scattering techniques (see [2]
for recent work). As in real crystals, the value of µ is found to depend strongly upon the
crystalline morphology and changes significantly between randomly oriented crystallites and
shear-ordered samples [3]. In addition, using this method, only a very reduced number of
modes can be investigated. A different approach to determine elastic constants is based on
the analysis of the thermally induced vibrations of the particles in the crystal [4]. These
fluctuations are inversely proportional to the elastic constants but depend also upon the
system size studied. Therefore a finite-size scaling method is applied to extrapolate to the
macroscopic elastic constants. We will show [5] that this method is well applicable to our
system as described below and gives results in good agreement with theoretical predictions.
However, so far the method can only be used for defect-free samples, a situation not always
easy to realize in experiments.
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Fig. 1 – Left: deformation of the air-water interface due to the particle weight. For θ and ϕ see text.
Right: cross-section through the sample cell. The particles are confined due to the air-water interface
and gravity.

In this work we describe a novel approach based on the use of optical tweezers to determine
elastic constants in 2D. Since the work of Ashkin [6], the manipulation of individual or groups
of colloidal particles trapped in a focused laser beam has become a widespread method in
colloid- and bio-physics. We use optical tweezers to induce local deformations in a 2D colloidal
crystal and show for the first time how elastic constants can be determined from the relaxation
behavior of the deformation. The reliability of this method is demonstrated and our results
for the shear modulus are in good agreement with theoretical predictions.

Experimental setup. – Aqueous solutions of monodisperse super-paramagnetic colloidal
particles with a diameter of 4.5 µm are used [7]. They consist of a porous polymer matrix
with Fe2O3 grains embedded inside the pores. The iron oxide doping, of approximately 10%
in volume, leads to a specific density of the particles of 1.5 g/cm3. Therefore particles are
subjected to strong sedimentation (velocity of the order of 6µm/s) and in our drop geometry
described below arrange in a single layer at the water-air interface (compare fig. 1). A magnetic
field B is applied perpendicular to the interface inducing a magnetic dipole moment M in the
colloidal particles. The resulting repulsive interaction Emagn is conveniently controlled by the
magnetic field strength and is calibrated through the dimensionless interaction parameter Γ:

Γ =
Emagn

kBT
=

µ0

4π

(χB)2(πρ)
3
2

kBT
. (1)

Here ρ is the 2D particle density and χ is an effective magnetic susceptibility of the
particles. The value of χ varied slightly among different particle batches and was of the
order of (7 ± 0.7) · 10−11A m2/T [8]. A precise determination of χ is described in ref. [9]. In
addition, within the experimental accuracy of 1% a perfect super-paramagnetic behavior, i.e.
no magnetic hysteresis, is observed by comparing pair correlation functions (in the liquid) or
Lindemann parameters (in the crystal) [9, 10].

The presented setup is quite special as the particles are confined at a water-air interface
in a hanging drop geometry. In the following we will demonstrate that such a system is, in
fact, an almost ideal 2D model system.

First, the deformation of the interface through the weight of the particles Fg = m ·g will be
considered (see fig. 1). We define the angle ϕ between the horizontal and the solvent interface
at the circular line of contact between colloid and water. θ denotes the angle between the
vertical axis and a vector pointing to the line of contact. The force caused by the surface
tension γ is Fγ = 2πR · γ sin θ, obtained by integration of γ over the line of contact. The
vertical component of this force, which counterbalances the weight of the particle, is Fγ · sinϕ.
As the ratio of Fg/Fγ is only of the order of 10−6, the deformation perceptible by the angle
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ϕ is in the range of µrad. Even though the real physical situation is somewhat more complex
as the particles are entirely wetted (i.e. θ = 0) [11], the estimation of the order of magnitude
remains valid and allows to neglect this effect completely.

Second, we consider the effect of capillary waves. Given the size of our cell, we can neglect
inertial waves. The wave vector spectrum of the amplitude ζ̂(q) is completely determined by
the surface tension γ and is given by

〈|ζ̂(q)|2〉 =
kBT

(2π)2γq2
. (2)

The mean-squared amplitude of the interface is now calculated as

〈ζ2〉 =
∫
〈|ζ̂(q)|2〉d2q =

kBT

2π

qmax∫
qmin

1
γq

dq =
kBT

2πγ
ln

(
qmax

qmin

)
; (3)

qmin is determined by the system size (qmin = 2π/16mm) and qmax is limited by the shortest
possible wavelength, which we assume to be 1 nm. We deduce that the mean amplitude 〈ζ2〉1/2

is of the order of 1 nm, i.e. entirely negligible on the length scale of the colloids.
Finally we consider the particle movement along the z-axis caused by the thermal energy

kBT . Equating the latter with the potential energy difference of a particle in the gravitational
field kBT = mg∆z leads to a displacement of the order of ∆z = 6 nm at room temperature.
In fact, this is the most relevant effect (of the three discussed) and actually makes the simple
method of confinement through gravity (∆z ≤ R) impossible for particle sizes below 1 µm.
However, in our case ∆z is still small enough with respect to the diameter of the colloids
making our setup basically an ideal 2D system.

Nevertheless, as illustrated by the last argument, a small height difference between the
center and the border of the solvent drop (fig. 1) leads to a large difference in the potential
energy compressing the system. For example, a height difference of only 1µm causes a density
variation of 5% between the border and the center at a relatively high interaction strength of
Γ = 220. Therefore, for a proper performance of the experiments it was essential to develop a
setup with an extremely flat interface. This was achieved by a special sample holder sketched
in fig. 2. It consists of a quadratic cell made of quartz glass of 20 mm length and 2 mm
thickness. In the center a cylindrical hole of 1 mm depth and 8 mm diameter is drilled into the
cell. This void is filled with the colloidal suspension and serves as sample volume. Via a small
drain it is connected to a second cylindrical hole of the same depth and diameter 4 mm, which
is used to change the amount of water in the sample volume. This is achieved by a syringe
connected through a capillary tube to the small cylindrical hole. The inner side of the sample
volume is hydrophilic while the lower flat surface of the cell is hydrophobic. Therefore, the
drop of suspension wets the sample volume entirely and the lower edge of the larger cylindrical
hole determines the boundary of the liquid drop. If, by means of the syringe, the amount of
solvent in the volume is adjusted accordingly, a completely flat surface can be achieved. We
obtain a flatness of less than 1µm over the entire interface. The syringe position and hence
the interface curvature is automatically adjusted by a computer. As a control parameter we
use the apparent size of the particles obtained by video-microscopic evaluation of the pictures
taken by a CCD camera (fig. 2). In fact, the apparent size of the colloids changes when the
particles move out of the focus of the microscope (×100 magnification, NA 0.8).

The optical tweezer consists of a strongly focused laser beam which pulls dielectric particles
into the maximum of their electromagnetic field, so that the particles remain trapped [6]. An
argon-ion laser (Coherent INOVA 300) is focused through a set of two lenses onto the aperture
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Fig. 2 – Left: bottom side of the cell. The large reservoir contains the sample. The small one is
used to control the amount of water by a syringe. Right: the CCD camera takes images through
the microscope objective which are analyzed by a computer to obtain the particle coordinates. The
optical tweezer consists of an Ar ion laser which is focused into the objective by a dichroic mirror.
The galvano mirrors enable the tweezer to move in the sample plane.

of the microscope objective. The latter is positioned in the focal plane of the second lens
while a two-axis scanning galvano mirror is placed in the focal plane of the first lens. Thus,
an angular variation of the laser beam obtained by a movement of the scanning mirror leads
to a different incident angle of the beam on the objective aperture. In this way the laser
focus can be moved to defined positions in the sample plane. In addition, as the mirrors can
be modulated with a frequency of up to 500 Hz it is possible to manipulate several particles
simultaneously.

Particular to our experiment is that the tweezer is only used for trapping within the
horizontal plane, as the particles are already confined vertically by gravity to the water/air
interface. The 2D trapping —as compared to 3D— substantially reduces the laser power
necessary to manipulate the colloids. The typical power to tweeze one particle at 514 nm
wavelength is 0.5 mW. The application of a much higher laser power would in fact lead to
thermal convection in the sample due to the absorption of the Fe2O3-doped particles.

Determination of the shear modulus. – The described setup was used to probe the shear
modulus µ directly and —to our knowledge for the first time— on a microscopic length scale
rather than by application of a macroscopic stress. Thus, our measurements give “ideal” values
of µ, i.e. for a defect-free solid, provided our derivation of macroscopic elastic constants from
microscopic data is correct. Obviously for comparison with theory it is most useful to have
ideal elastic constants rather than values determined by the (likely) complex topology of the
lattice defects.

To probe the shear modulus in our 2D colloidal system we exploit the analogy of a rotated
disk in an elastic continuum: three particles forming a triangle were rotated by the optical
tweezer on a circle with constant radius (fig. 3). The relaxation of this displacement of the
three particles into their equilibrium position was observed.

In detail, three adjacent particles lying on an equilateral triangle were displaced by 20
degrees on a circle around their center of mass by a stepwise tweezer rotation. The tweezer
moved to a new destination (close enough to the actual particle position, such that the par-
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Fig. 3 – Left: the labeled particles were moved on a circle by the tweezer to induce a local deformation.
Right: the time-dependent relaxation of the standardized deformation angle α for Γ = 279 and four
other crystal stiffnesses plotted logarithmically in the inset.

ticle is still sufficiently confined in the trap) and is kept there until the particle reaches the
center position of the tweezer. This is done in turns for all three particles until the angular
displacement is equal to 20 degrees. In fig. 3 such a twisted triangle is shown. Hereafter the
tweezer is switched off and the particle relaxation is recorded in terms of the angle (line be-
tween a particle and the common center of the triangle compared to its equilibrium position)
as a function of time. In the main part of fig. 3 a typical relaxation curve (normalized to 1 at
t = 0 s) vs. time is shown obtained by averaging 277 measurements. This curve was obtained
for Γ = 279, i.e. deep in the crystalline phase (the melting transition occurs at Γ = 60 [10]).
In the inset —in logarithmic scale— the dependence of the relaxation time τ upon the in-
teraction strength Γ is illustrated: as Γ increases (which is equivalent to a decrease in the
effective temperature) the crystal becomes stiffer resulting in a decrease of τ . A complete set
of curves was obtained for Γ between 68 and 441.

The following simple model enables us to determine the shear modulus from the relaxation
of the angle α: We represent the rotated triangle as a twisted solid disk (of radius RD = 0.91·a
[12]) in a 2D elastic continuum. In linear elasticity [13] the strain induced by a disk under a
given torque M is known to be inversely proportional to the shear modulus µ and decays with
1/r2 from the center of the disk [14]: εrr = εϕϕ = 0, εrϕ = M/(πµr2). The latter is related
to the angular displacement uϕ through the basic differential equation of 2D elasticity [14]

2εrϕ =
∂uϕ

∂r
− uϕ

r
solved by uϕ = − M

µπr
. (4)

We set uϕ = RD · α′ and integrate with respect to α′ from 0 to a finite value α. Using∫ α

0
Mdα′ = E (the energy of the deformation), we derive

E = 2πµα2R2
D . (5)

This implies a repel force FR proportional to the twist angle α:

FR = −4πµRDα . (6)

If we assume that the colloidal movement is totally overdamped due to the high viscosity
of the suspension and if we neglect hydrodynamic interactions, we can equate FR with the
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Fig. 4 – The inverse shear modulus µ is plotted vs. Γ. The dots indicate the measured values with
error bars. The solid line is the fit of the experimental data and the dashed line represents the
theoretical behaviour.

Stokes friction:
FS = −6πηRP

a√
3

∂α

∂t
. (7)

There η denotes the viscosity of water [15] and RP = 2.25µm is the particle radius. The
resulting differential equation (FR + 3 · FS = 0) has the solution:

α(t) = α0 · e−t/τ , τ =
ηRP

µ

√
9π

2
√

3
. (8)

The obtained experimental relaxation curves (like fig. 3) are fitted to α(t) = exp[−t/τ ]
and µ is deduced, µ being the only unknown in eq. (8). Figure 4 shows the dependence of the
shear modulus on Γ.

Discussion. – As the interaction potential is known exactly, the elastic constants can
be obtained by standard formulas of elasticity theory, at least for zero temperature [16]. For
the shear modulus one obtains µ = 0.346Γ. If we fit a straight line to our data (solid line in
fig. 4) a slope of 0.27 is found for high Γ, respectively, low temperatures. Considering that
this value is obtained without any adjustable parameter, this is a rather excellent agreement
between theory and experiment. Nevertheless, some systematic deviation from the straight
line is observed for small Γ because close to the phase transition temperature Γ−1

m the zero-
temperature model is not valid. We will discuss the behavior of the shear modulus and the
bulk modulus in the vicinity of the melting transition in a separate paper.

Finally some points remain to be clarified: On the one hand the radius of the disc (RD)
is not precisely defined and could be varied by a factor of order 1. On the other hand, it
is not clear whether the zero-temperature calculation may be extended to the temperature
range where the experiments have been performed. Finally the measurement is performed on
a local scale and even though we probe the shear modulus, the precise relationship between
our results and the macroscopic elastic constant µ is a priori not clear. This issue will be
addressed in a forthcoming paper [5] on 2D colloidal crystals using a finite-size scaling scheme,
recently proposed and applied to 2D ensembles of hard discs by Sengupta et al. [4].

Conclusion. – In summary, we have demonstrated in detail that our system of paramag-
netic colloids disposed at a water-air interface is an almost ideal 2D model system. We showed
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that optical tweezers can be used to manipulate several particles simultaneously and move
them against the repel forces of the surrounding neighbours to defined positions in the lattice.
We applied a defined strain to the lattice and were able to study the relaxation to equilibrium.
A simple model was developed to extract the shear modulus µ from the relaxation time and
good agreement with a zero-temperature calculation was obtained. Our method can be used
in other relaxation modes to determine a complete set of elastic constants (shear modulus µ
and bulk modulus B). This enables a crucial quantitative testing of the 2D melting theory
by Kosterlitz and Thouless (KTHNY), which relates the melting temperature to µ and B. In
addition our method can be used to probe the orientational stiffness (equivalent of the Frank
constant of the nematic liquid crystals) in the hexatic phase which plays an important role in
the KTHNY theory.
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