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Interaction and flocculation of spherical colloids wetted by a surface-induced
corona of paranematic order
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Particles dispersed in a liquid crystal above the nematic-isotropic phase transition are wetted by a surface-
induced corona of paranematic order. Such coronas give rise to pronounced two-particle interactions. In this
paper, we report details on the analytical and numerical study of these interactions published recently@Phys.
Rev. Lett.86, 3915~2001!#. We especially demonstrate how for large particle separations the asymptotic form
of a Yukawa potential arises. We show that the Yukawa potential is a surprisingly good description for the
two-particle interactions down to distances of the order of the nematic coherence length. Based on this fact, we
extend earlier studies on a temperature induced flocculation transition in electrostatically stabilized colloidal
dispersions@Phys. Rev. E61, 2831 ~2000!#. We employ the Yukawa potential to establish a flocculation
diagram for a much larger range of the electrostatic parameters, namely, the surface charge density and the
Debye screening length. As a distinguished feature, a kinetically stabilized dispersion close to the nematic-
isotropic phase transition is found.
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I. INTRODUCTION

Colloidal dispersions are suspensions in a host fluid
solid or liquid particles, of radius ranging from 10 nm
10 mm @1#. They are long-lived metastable states of mat
that present great interest both from a fundamental poin
view and in applications, e.g., in paints, coatings, foods,
drugs. Their stability against flocculation is a key issue
colloidal physics, since the properties of a colloidal disp
sion drastically change when a transition from a disperse
an aggregate state occurs: to prevent coagulation due t
tractive van der Waals forces, colloidal particles are usu
treated in order to produce electrostatic or steric repuls
interactions.

Recently, great attention was paid to liquid-crystal coll
dal suspensions and emulsions, i.e., dispersions of solid
ticles or liquid droplets—respectively—in a liquid cryst
@2–6#. In the case of emulsions in a nematic phase, the ra
anchoring of the nematic molecules at the surface of
droplets yields topological defects of the nematic texture
the vicinity of the droplets. These defects produce stro
repulsions that stabilize the liquid droplets against coa
cence@4#. Similar effects are present also in other anisotro
fluid hosts, such as lyotropic solutions of anisotropic m
celles@7#, and in different liquid crystal phases, as in chole
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terics @8#. Such systems form composite materials with u
usual properties@9–11#.

Even more recently, there has been a growing interes
the pretransitional surface-induced interactions mediated
the paranematic order arising in the vicinity of surfaces
temperatures above the nematic-isotropic phase transitio
Ref. @12#, the force between two parallel plates immersed
a liquid crystal slightly above the bulk isotropic-nemat
transition was theoretically investigated. In Ref.@13#, the
force between a flat surface and a glass microsphere, m
ated by the surface-induced paranematic order, was exp
mentally measured using an atomic force microscope.
measurements were interpreted in terms of the force betw
two flat surfaces using the Derjaguin approximation@14#.

Interesting effects regarding the stabilization of colloi
are thus to be expected in theisotropic phase of a nemato
genic material when the colloids are wetted by a corona
paranematic order@15–17#. Two effects compete: an attrac
tion due to the favorable overlapping of the paranematic
los ~which reduces the volume of the thermodynamically u
favorable paranematic phase! and a repulsion due to th
distortion of the director field. The vicinity of a phase tra
sition may give a critical character to the stabilizatio
mechanism and yield rich reversible phase-separation be
iors, as predicted in Refs.@18,19# for a simpler system with a
scalar order parameter. In Ref.@15#, the interaction of two
spherical particles immersed in a liquid crystal above
nematic-isotropic phase transition was investigated usin
uniaxial ansatz function for the paranematic order, in
limit of sphere radii large with respect to the nematic coh
©2003 The American Physical Society04-1
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GALATOLA, FOURNIER, AND STARK PHYSICAL REVIEW E67, 031404 ~2003!
ence length. This approximate solution was used in Ref.@20#
to analyze the stability of a suspension of such colloi
particles, in the presence of destabilizing van der Waals
tractive interactions and stabilizing electrostatic repulsio
In Ref. @16#, an exact numerical solution for the abov
paranematic interaction was obtained, using a multipolar
pansion of the tensor order parameter and taking into acc
biaxiality. The possibility of stabilizing colloidal particle
was discussed, emphasizing the case of rather small part
i.e., of size comparable to several nematic coherence len
A large-separation asymptotic analytic form of Yukawa ty
was also obtained, that was shown to very closely desc
the exact interaction between large particles up to separa
comparable to the nematic coherence length@21#. Alternative
derivations of the Yukawa potential were given in Ref.@17#
based on a Debye-Hu¨ckel type approximation and a geome
ric view.

In this work, we revise in detail the solution found in Re
@16#, which is exact in the limit of weak surface-induce
paranematic order. We give a particular emphasis on
meaning and limits of validity of the approximate asympto
solution. The latter is used to analyze in detail the stability
a colloidal suspension in the presence of van der Waals
electrostatic interactions. We obtain and discuss general
grams for the stability of the suspension as a function of
various relevant parameters.

The detailed plan of our paper is the following. In Sec.
we describe our Landau–de Gennes@22# model for the bulk
and the surface free energy. In Sec. III, we present the
responding equilibrium equations and formulate the gen
multipolar expansion for the bulk order parameter in sph
cal coordinates. This expansion is used in Sec. IV to ob
the exact solution for an isolated spherical particle. The
teraction of two such particles is discussed in Sec. V.
particular, in Sec. V B 1, we derive the asymptotic intera
tion energy. The asymptotic solution is analyzed in S
V B 2 in terms of the superposition of single-particle so
tions. In Sec. V B 3, we discuss the limits of validity of th
Derjaguin approximation. In Sec. V C, we present an ex
numerical solution for the interaction of two particles. T
comparison between the asymptotic interaction energy
the exact numerical one is performed in Sec. V C 1. In S
V C 2, we discuss the texture between two interacting p
ticles, and in Sec. V C 3, we analyze the defect ring t
appears in the paranematic texture between the two parti
Finally, in Sec. VI, using our asymptotic solution, we discu
the stability of such colloidal dispersions.

II. MODEL

Let us first describe the nematogenic phase in which
colloids will be placed. Nematic liquid crystals are anis
tropic liquid phases, in which elongated molecules displa
long-range orientational order. This order is described b
symmetric traceless tensorial order parameterQi j ( i , j
51,2,3), since nematics are nonpolar@22#. The eigenvectors
of Qi j represent the axes of main molecular orientation a
its eigenvalues describe the amount of orientational orde
in each direction. Usually, nematics are uniaxial phas
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however biaxiality naturally arises in inhomogeneous sit
tions, e.g., in the vicinity of defects@23#. The Landau–de
Gennes expansion of the bulk free-energy density@22# has
the form @24,25#

f b5
a

2
Qi j Qi j 2

b

3
Qi j QjkQki1

c

4
~Qi j Qi j !

21
L

2
Qi j ,kQi j ,k .

~1!

Summation over repeated indices is implied and the com
indicates derivation. The coefficients are such thata5a(T
2T* ), with a, c, andL positive. The temperatureT* is the
lowest temperatureT, at which the isotropic phase can exis
The presence of the cubic termQi j QjkQki in the homoge-
neous part implies that the nematic-isotropic transition is
first order. To simplify the description, we have introduc
only one gradient term in Eq.~1!, which corresponds to the
usual one-constant approximation@26#. The most general ex
pansion of the surface free-energy density is@27,28#

f s5v1Qi j n in j1
v21

2
Qi j Qi j 1

v22

2
Qi j Qjkn ink

1
v23

2
Qi j Qkln in jnkn l1O~Q3!, ~2!

where then i ’s ( i 51,2,3) are the components of the outwa
normaln of the surface. Owing to the linear term, the surfa
always locally favors a nonzero order.

Since we are dealing with the isotropic phase, and,
addition, we assume a weak surface-induced order and
peratures not too close to the phase transition, we can ne
the third- and higher-order terms inf b and f s @15,16#. Then,
the free energy being quadratic, exact calculations are
sible. To simplify, we shall also retain only the simplest qu
dratic surface term, by settingv2250 andv2350. Then the
free-energy densities can be put in the form

f b5
a

2
Qi j Qi j 1

L

2
Qi j ,kQi j ,k , ~3a!

f s5
1
2 W~Qi j 2Qi j

(0)!~Qi j 2Qi j
(0)!, ~3b!

where

Qi j
(0)5S0~n in j2

1
3 d i j ! ~4!

is the preferred order parameter at the surface. The sur
free-energy density~3b! is compatible with the experimen
tally measured anchoring in the nematic phase@28#.

In the following, unless otherwise specified, we shall n
malize lengths with respect to the nematic correlation len
j5(L/a)1/2 and energies with respect toF05aj3S0

2. Due to
the conditions thatQi j must be symmetric and traceless, t
free-energy densities~3! are not diagonal in the five indepen
dent components ofQi j . Defining the following set of com-
ponents:

q05
Qxx2Qyy

S0
, ~5a!
4-2



ve
llo
em
s

ro

he

n
s

h
fo
ith
e
to
c
a

tio

s

f-

om-

ar-

f

ter

INTERACTION AND FLOCCULATION OF SPHERICAL . . . PHYSICAL REVIEW E 67, 031404 ~2003!
q15
Qyz

S0
5

Qzy

S0
, ~5b!

q25
Qxz

S0
5

Qzx

S0
, ~5c!

q35
Qxy

S0
5

Qyx

S0
, ~5d!

q45
Qzz

S0
, ~5e!

the normalized free energy takes the followingdiagonal
form:

F5(
i 50

4

ci H E @qi
21~“qi !

2#d3r 1wE ~qi2qi
(0)!2d2r J ,

~6!

where c051/4, c15c25c351, c453/4, andw5W/aj is
the normalized anchoring strength. The first integral is o
the bulk and the second one over the surface of each co
dal particle. Due to this transformation, the tensorial probl
associated with the paranematic order between the colloid
reduced to the superposition of five independent scalar p
lems.

III. EQUILIBRIUM EQUATIONS AND SOLUTIONS

At equilibrium, the order-parameter texture minimizes t
free energy~6!. By setting to zero the variationdF of the
free energy, associated with arbitrary infinitesimal variatio
of the qi components, we obtain the equilibrium equation

~¹221!qi50, ~7!

in the bulk, and

n•“qi5w~qi2qi
(0)!, ~8!

on the surface of each colloidal particle. Determining t
paranematic order outside the colloidal particles is there
somewhat similar to solving an electrostatic problem w
mixed boundary conditions, in which the potential is r
placed by theqi fields and the standard Laplacian opera
by ¹221. We shall therefore use multipolar expansions. A
tually, the operator¹221 is the operator associated with
massive boson field, which implies a short-range interac
@29#.

A. Multipolar expansion

In spherical coordinates (r ,u,f), the spherical harmonic
Y,m(u,f) ~for their definition, see the Appendix! are eigen-
functions of the angular part of the Laplacian operator¹2

and form a complete basis. Then, each of theqi ’s can be
expanded as
03140
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qi~r ,u,f!5 (
,50

`

(
m52,

,

qi
,mu,~r !Y,m~u,f!, ~9!

where the functionsu,(r ) obey the equations

d

dr S r 2
du,

dr D5@r 21,~,11!#u, , ~10!

which follows by inserting expansion~9! into the bulk equa-
tion ~7!. The solution of Eq.~10! that is regular at infinity can
be expressed as

u,~r !5A 2

pr
K,11/2~r !, ~11!

where theK,11/2(r ) are modified Bessel functions of hal
integer order. Explicitly,

u0~r !5
e2r

r
, ~12a!

u1~r !5
e2r

r S 11
1

r D , ~12b!

u2~r !5
e2r

r S 11
3

r
1

3

r 2D , ~12c!

u,11~r !5
2,11

r
u,~r !1u,21~r ! for ,>1. ~12d!

With such an expansion, the paranematic order is thus c
pletely described by the set of coefficientsqi

,m .

B. Equilibrium free energy

By integrating by parts Eq.~6! and using the equilibrium
equations~7! and~8!, the normalized free energy~6! associ-
ated with an equilibrium solution can be written as

F5w(
i 50

4

ciE qi
(0)~qi

(0)2qi !d
2r , ~13!

where the integrations run over the surfaces of all the p
ticles.

IV. PARANEMATIC ORDER AROUND ONE PARTICLE

Let us consider a spherical particle of reduced radiusR. In
spherical coordinates (r ,u,f), the normal to the surface o
the particle is given by n5sinu cosf x̂1sinu sinfŷ
1cosuẑ. Therefore, the preferred surface order parame
~4! has the followingq components@see Eqs.~5!#:

q0
(0)5sin2u cos 2f54A2p

15
Y22

R ~u,f!, ~14a!

q1
(0)5

1

2
sin 2u sinf522A2p

15
Y21

I ~u,f!, ~14b!
4-3
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q2
(0)5

1

2
sin 2u cosf522A2p

15
Y21

R ~u,f!, ~14c!

q3
(0)5

1

2
sin2u sin 2f52A2p

15
Y22

I ~u,f!, ~14d!

q4
(0)5cos2u2

1

3
5

4

3
Ap

5
Y20~u,f!, ~14e!

where

Y,m
R 5

1

2
~Y,m1Y,m* !, ~15a!

Y,m
I 5

1

2i
~Y,m2Y,m* ! ~15b!

are the real and imaginary parts, respectively, of the sphe
harmonics. The boundary conditions~8! become simply

]qi

]r
ur 5R5w@qi~R,u,f!2qi

(0)~u,f!#. ~16!

Replacing in Eq.~16! qi by its multipolar expansion~9! and
qi

(0) by its expression given in Eqs.~14!, and identifying the
coefficients of the spherical harmonics, yields the solutio

S q0

q1

q2

q3

q4

D 5A2p

15S 2 Y22
R ~u,f!

2Y21
I ~u,f!

2Y21
R ~u,f!

Y22
I ~u,f!

A2

3
Y20~u,f!

D 2A~R,w!eR u2~r !,

~17!

where the amplitudeA(R,w) is given by

A5
R4w

R3~w11!1R2~3w14!13R~w13!19
~18!

andu2(r ) is given by Eq.~12c!.
Since Eq.~17! has the same angular structure as Eqs.~14!,

the order parameter is uniaxial with a radial directorn5n,
i.e., Qi j 5S(r )(n in j2

1
3 d i j ), where

S~r !5S0A~R,w!S 11
3

r
1

3

r 2D eR2r

r
~19!

is the uniaxial scalar order parameter. Note that whatever
size of the particle, the paranematic order relaxes on
coherence lengthj ~equal to unity in reduced units!. The
behavior of the scalar order parameter at the surface of
particle (r 5R), as a function of the radiusR, is shown in
Fig. 1. For large values ofR, the surface order tends t
S(R).S0w/(11w) which corresponds to the limit of a pla
03140
al

he
e

he

nar interface. ForR&10 ~in units of j), the surface order
parameter is reduced because of the energy cost assoc
with the splay of the director.

The free energy of the particle is obtained from Eq.~13!.
With the help of Eqs.~14! and~17! and the orthonormality of
the spherical harmonics, we find

F15
4p

3
A~R,w!S R141

9

R
1

9

R2D . ~20!

V. INTERACTION OF TWO PARTICLES

Let us now consider two identical spherical particles
reduced radiusR separated by a center-to-center distanced.
We introduce three spherical coordinate systems: a glo
one, (r ,u,f), symmetrically placed with respect to the pa
ticles, and two local ones, (r 1 ,u1 ,f) and (r 2 ,u2 ,f), cen-
tered on the two particles, as indicated in Fig. 2.

A. General formalism

Using the symmetry of the system allows one to redu
the number of free parameters in the tensorial ord
parameter field. For a given pointP, the planePP passing
through P and thez axis is a symmetry plane. Thus, th
frame (e(1),e(2),e(3)) in which Qi j is diagonal has two direc
tionse(1) ande(2) in the planePP and the third,e(3), normal
to it. This frame can be parametrized by the angleQ(r ,u)
that e(1) makes with thez axis:

e(1)5sinQ cosf x̂1sinQ sinf ŷ1cosQ ẑ, ~21a!

e(2)5cosQ cosf x̂1cosQ sinf ŷ2sinQ ẑ, ~21b!

e(3)52sinf x̂1cosf ŷ. ~21c!

Therefore, the order-parameter tensorQi j can be written as

Qi j 5l1ei
(1)ej

(1)1l2ei
(2)ej

(2)1l3ei
(3)ej

(3) , ~22!

where its eigenvaluesl i satisfy

FIG. 1. Normalized scalar order parameterS(R)/S0 at the sur-
face of one isolated spherical colloid as a function of its normaliz
radiusR for various reduced anchoring strengthw.
4-4
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l352~l11l2!, ~23!

sinceQi j is traceless. The correspondingq components~5!
are therefore

q05a~r ,u!cos 2f, ~24a!

q15b~r ,u!sinf, ~24b!

q25b~r ,u!cosf, ~24c!

q35 1
2 a~r ,u!sin 2f, ~24d!

q45g~r ,u!, ~24e!

with

a~r ,u!5
l1

S0
~11sin2Q!1

l2

S0
~11cos2Q!, ~25a!

b~r ,u!5
l12l2

2S0
sin 2Q, ~25b!

g~r ,u!5
l1

S0
cos2Q1

l2

S0
sin2Q. ~25c!

Hence the order-parameter field around two particles is f
described by the three fieldsa(r ,u), b(r ,u), andg(r ,u).

1. Multipolar development

For two particles, the most general expression ofQi j in
terms of multipoles must be a sum oftwo multipolar expan-
sions of the kind~9!, each one centered on each one of
particles. The reason is the following. Since a multipo
expansion such as Eq.~9! is singular at the origin (r 50), the
latter must be put inside one of the particles. Moreover, us

FIG. 2. Geometry for the calculation of the paranematic int
action between two identical spherical colloidal particles separa
by a center-to-center distanced. The origin of thez axis is at the
midpointO between the centers of the two particles, that ofz1 at the
centerO1 of the upper particle, and that ofz2 at the centerO2 of the
lower one.
03140
y
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g

only one expansion, one would impose that the analyt
continuation of the texture is regular inside the other parti
~because the multipolar expansion is regular everywhere
at r 50), which is not required. Therefore, in the most ge
eral case, there must be a second multipolar source insid
other particle. For two identical particles, this is also obvio
from symmetry considerations.

Taking into account the general form~24! and the fact that
(x,y) is a symmetry plane, the double multipolar expans
takes the form~see also the Appendix!

a~r ,u!5 (
,52

`

(
p51

2

a,u,~r p!P,
2~cosup!, ~26a!

b~r ,u!5 (
,51

`

(
p51

2

~21!pb,u,~r p!P,
1~cosup!, ~26b!

g~r ,u!5 (
,50

`

(
p51

2

g,u,~r p!P,
0~cosup!. ~26c!

Thus, at this point, the whole order-parameter texture
uniquely determined by the set of coefficientsa, ~with ,
52,3, . . . ), b, ~with ,51,2, . . . ), and g, ~with ,
50,1, . . . ).

2. Boundary conditions

Due to the presence of the (x,y) symmetry plane, we
need to impose the boundary conditions~8! only on one of
the particles, let say particle 1. These boundary conditi
on the q components transform to boundary conditions
the fieldsa, b, andg @see Eqs.~24!#, which in the coordi-
nates (r 1 ,u1) relative to particle 1, take the form

]a

]r 1
ur 15R5wFa~r 15R,u1!2

1

3
P2

2~cosu1!G , ~27a!

]b

]r 1
ur 15R5wFb~r 15R,u1!1

1

3
P2

1~cosu1!G , ~27b!

]g

]r 1
ur 15R5wFg~r 15R,u1!2

2

3
P2

0~cosu1!G . ~27c!

Note that these equations are decoupled; therefore the t
fields a, b, andg can be treated independently.

3. Coordinate transformation

To impose the boundary conditions~27! on the multipolar
expansions~26!, we need to express the spherical coor
natesr 2 andu2 in terms ofr 1 andu1. From Fig. 2, we easily
obtain

-
d

4-5
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r 25Ar 1
21d212d r1 cosu1, ~28a!

cosu252
r 1 cosu11d

Ar 1
21d212d r1 cosu1

. ~28b!

B. Asymptotic solution

The exacttwo-particle order-parameter texture~26! satis-
fying the boundary conditions~27! cannot be determined
analytically, owing to the intricate relations~28! that link the
local coordinate systems centered on the two particles. H
ever, in the limitd@1, i.e., for distances large with respe
to the nematic coherence lengthj ~even if d22R!R), we
can obtain anasymptoticsolution by expanding the unknow
multipolar coefficientsa, , b, , andg, in series ofe2d/dn

up to a given ordern. In the following, we shall obtain the
lowest-order expansion,n51. It turns out that to this orde
the only nonzero terms in the multipolar expansions~26! are
those up to,52.

To begin with, we illustrate the strategy for computing t
g, coefficients. We start by writing the expansion~26c! on
particle 1 (r 15R) up to ,52:

g~r 15R,u1!5g0@u0~R!P0
0~cosu1!1u0~R2!P0

0~cosQ2!#

1g1@u1~R!P1
0~cosu1!1u1~R2!P1

0~cosQ2!#

1g2@u2~R!P2
0~cosu1!1u2~R2!P2

0~cosQ2!#, ~29!

whereR25R2(u1) is the r 2 coordinate~28a! evaluated on
particle 1 (r 15R), and, similarly, cosQ25cosQ2(u1) is the
cosu2 coordinate~28b! evaluated on particle 1. Next, w
asymptotically develop the functionsun(R2)Pn

0(cosQ2) up
to terms of the ordere2d/d,

un~R2!Pn
0~cosQ2!.~21!n

e2d

d
e2Rcosu1, ~30!

and we redevelop this expansion on the complete basi
Legendre functions of first kindPn

0(cosQ1), using the or-
thogonality relations~A3!. Truncating the expansion at,
52, for the sake of consistency, we arrive at

un~R2!Pn
0~cosQ2!.~21!n

e2d

d H sinhR

R
P0

0~cosu1!

23FcoshR

R
2

sinhR

R2 GP1
0~cosu1!

15FsinhR

R
2

3 coshR

R2
1

3 sinhR

R3 G
3P2

0~cosu1!J . ~31!
03140
-
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Replacing Eq.~31! into Eq. ~29! yields the required expan
sion of g. To match the boundary conditions, let us det
mine the corresponding expansion for the radial derivative
g. To this aim, it is most efficient to take into account th
the radial functions~12! obey the relations

dun~r !

dr
5

nun~r !

r
2un11~r !. ~32!

We then obtain

]g

]r 1
ur 15R5g0H 2u1~R!P0

0~cosu1!

1
]

]r 1
@u0~r 2!P0

0~cosu2!# r 15RJ
1g1H Fu1~R!

R
2u2~R!GP1

0~cosu1!

1
]

]r 1
@u1~r 2!P1

0~cosu2!# r 15RJ
1g2H F2 u2~R!

R
2u3~R!GP2

0~cosu1!

1
]

]r 1
@u2~r 2!P2

0~cosu2!# r 15RJ , ~33!

in which, according to Eq.~31!,

]

]r 1
@un~r 2!Pn

0~cosu2!# r 15R

.~21!n
e2d

d H FcoshR

R
2

sinhR

R2 GP0
0~cosu1!

23FsinhR

R
2

2 coshR

R2
1

2 sinhR

R3 GP1
0~cosu1!

15FcoshR

R
2

4 sinhR

R2
1

9 coshR

R3
2

9 sinhR

R4 G
3P2

0~cosu1!J . ~34!

Finally, we insert the relations~29!, ~31!, ~33!, and ~34! in
the boundary condition~27c!. Due to the orthogonality rela
tions ~A3!, we get three linear coupled equations for t
unknown coefficientsg0 , g1, andg2. Solving them to the
leading order ine2d/d yields, after some lengthy algebra,
4-6
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g0.
e2d

d
$eRR4w$R~w11!112e2R@R~w21!11#%%3$3@R4~w11!21R3~3w218w15!

1R2~3w2115w113!16R~2w13!19#%21, ~35a!

g1.
e2d

d
$eRR4w$R2~w11!1R~w12!121e2R@R2~w21!2R~w22!22#%%$R5~w11!212R4~2w215w13!

1R3~6w2124w119!1R2~3w2130w135!13R~5w112!118%21, ~35b!

g2.
2

3
A~R,w!eR3H 11

5

2

e2d

d F12
e2RA~R,w!@R3~w21!2R2~3w24!13R~w23!19#

R4w
G J . ~35c!
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The calculation of the remaining coefficientsa, andb, is
much simpler since, to the leading order ine2d/d, they do
not depend ond, because of the asymptotic behavior

un~R2!Pn
1~cosQ2!}

e2d

d2
, ~36a!

un~R2!Pn
2~cosQ2!}

e2d

d3
. ~36b!

These coefficients are therefore given by their express
for an isolated particle

a2. 1
3 A~R,w!eR, ~37a!

b1.0, ~37b!

b2.2 1
3 A~R,w!eR. ~37c!

1. Asymptotic interaction energy

To calculate the free energy we use Eq.~13!. By symme-
try, it is equal to twice the contribution corresponding to t
surface of particle 1. In order to calculate this contributio
we expressa(r 15R,u1), b(r 15R,u1), andg(r 15R,u1) as
an expansion in Legendre functions:

a~r 15R,u1!5 (
n52

`

AnPn
2~cosu1!, ~38a!

b~r 15R,u1!5 (
n51

`

BnPn
1~cosu1!, ~38b!

g~r 15R,u1!5 (
n50

`

CnPn
0~cosu1!. ~38c!

Using Eq.~13! and the orthogonality of the Legendre fun
tions, we obtain

F5 4
15 pR2w~10212A2112B223C2!. ~39!

The coefficientsA2 , B2, andC2 are easily calculated from
the asymptotic expansions ofa, b, andg given in the pre-
ceding section. We arrive atF52 F11F int

` , whereF1 is the
free energy~20! of an isolated particle and
03140
ns

,

F int
` 5

28pR8w2e2(d22R)

3d@R3~w11!1R2~3w14!13R~w13!19#2

52
8p

3
A 2

e2(d22R)

d
~40!

is the asymptotic interaction free energy. It is always attr
tive and has the form of a Yukawa potential@29#. In Sec.
V C 1, using a numerical calculation, we shall show that t
asymptotic expression is quite good even up to separation
the order ofj or less.

2. Analysis of the effective Yukawa potential

There exists an instructive geometric view on the orig
of the attractive part of the two-particle interaction mediat
by the surface-induced paranematic order. It reproduces
form of the Yukawa potential of Eq.~40! under the assump
tion of large particles (R@1) and was presented by one
the authors in Ref.@17#. The basic idea is that the overlap
ping of the paranematic coronas of the two particles redu
the volume of the energetically unfavorable liquid crys
ordering, as illustrated in Fig. 3, and therefore the total f
energy. The interaction energy is the free energy of the
moved orientational order. If we denote byQi j

(n)(r) the
single-particle order-parameter field centered on particln

FIG. 3. The attractive paranematic interaction between the
ticles comes from the overlapping of the two paranematic coro
of thicknessj. In the geometric view, the interaction energy
equal to the negative of the free energy of the excess orientati
order in the dark shaded region@for an exact definition see Eq
~41!#. The half spacesV1 and V2 are defined by the midplane o
particles 1 and 2.
4-7
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and switch to the representation by the componentsqi
(n) ( i

50, . . . ,4) @see Eq.~17!#, the interaction energy is calcu
lated as

F int522(
i 50

4

ci H E
V2

@~qi
(1)!21~“qi

(1)!2#d3r J , ~41!

whereV2 denotes the half space of particle 2~see Fig. 3!.
This definition leads to the Yukawa potential of Eq.~40! in
the limit R@1, however with half the strength. Its advanta
lies in its semiquantitative agreement with Eq.~40! and its
simplicity. Using a type of Voronoi cell construction, it i
extensible to multibody interactions which are important
the study of particle aggregation and the formation of
dered crystalline structures.

It was also demonstrated in Ref.@17# that the Yukawa
potential of Eq.~40! can exactly be derived by approxima
ing the tensorial order parameter through a linear superp
tion of the two single-particle solutions centered on particl
and 2:

Qi j ~r!5Qi j
(1)~r!1Qi j

(2)~r!. ~42!

This approach is in full analogy to the treatment of the tw
particle potential in electrostatically stabilized colloids bas
on the Debye-Hu¨ckel approximation.

3. Derjaguin approximation

The force between two interacting spheres is often ca
lated in terms of the interaction energy per unit surfaceE(s)
between two parallel plates a distances apart, using the so
called Derjaguin approximation@14#. For two equal sphere
of radii R a distances apart, the force in the Derjaguin ap
proximation is simplyFD(s)5pRE(s) @14#. Such an ap-
proximation is valid if the interactions are additive and if t
radii of the particles are large with respect to both the ra
of the interaction and the minimum separation distancs
between the particles. Although in our case, the interac
energy is not pairwise additive, let us examine whether th
exists a regime in which the Derjaguin approximation hol

The interaction energy between two parallel plates,
posing homeotropic boundary conditions, immersed in
nematic liquid crystal was calculated in Ref.@12#. For weak
induced paranematic order in the isotropic phase, we can
our quadratic free energy~3!. The resulting order paramete
is everywhere uniaxial, with a nematic director everywhe
orthogonal to the surfaces. In our reduced units, a strai
forward calculation gives the exact interaction energy
unit surface,

E~s!52
4w2

3~11w!@es~11w!1w21#
, ~43!

that is everywhere attractive. The Derjaguin approximat
gives the interaction force

FD~s!52
4pRw2

3~11w!@es~11w!1w21#
. ~44!
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To check the Derjaguin approximation, we need to co
pare theforcesand not the interaction energy. Indeed, sin
the Derjaguin approximation does not hold for separatio
large with respect to the radii of the particle, we cannot
the correct zero level for the interaction energy. We calcul
the exact forceF52]F int /]d by numerically evaluating the
interaction energyF int , as will be explained in Sec. V C. In
Fig. 4, we plot the relative errorD, defined throughF
5FD(11D). As it is seen, the Derjaguin approximation
rather crude. Moreover, it does not improve as the separa
distances tends to zero, as is normally expected. This is m
probably due to the non-pairwise-additive character of
force. The error is actually lowest in the intermediate ran
1!s!R. Indeed, in the limits@1, the Derjaguin approxi-
mation ~44! becomes

FD~s!.2
4pRw2e2s

3~11w!2
, ~45!

which coincides, in the limit R@1, with the exact
asymptotic force2]F int

` /]d obtained from the asymptotic
interaction energy~40!, with s5d22R. Care should there-
fore be taken in using the Derjaguin approximation for d
tances to contact that are comparable with the nematic
herence lengthj @13#.

C. Numerical results

When the two colloidal particles are an arbitrary distan
d apart, we determine numerically the equilibrium orde
parameter texture. To this aim, we truncate the expans
~26! at some order,5,max. Then, with the aid of the coor
dinate transformation~28! and of the orthogonality relation
~A3!, we project numerically the boundary conditions~27!
onto the Legendre functions of the first kindP,

m(u1), with
m52 for the functiona(r ,u), m51 for b(r ,u), and m
50 for g(r ,u), and ,5m, . . . ,,max. This gives three de-
coupled sets of linear equations that we solve numerically

FIG. 4. Relative errorD of the force in the Derjaguin approxi
mation with respect to the exact numerical one, calculated acc
ing to the procedure outlined in Sec. V C. The error is plotted a
function of the distance to contacts5d22R for a particle of re-
duced radiusR520 and for various values of the reduced anchor
w. Contrary to what is expected, the approximation does not
prove at short distances.
4-8
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determine the unknown coefficientsa, ~with ,
52, . . . ,,max), b, ~with ,51, . . . ,,max), and g, ~with ,
50, . . . ,,max). Finally, we vary the order,max of the expan-
sions to obtain a given accuracy. Typically, only a few m
tipoles (,max.10–20) are needed to reach relative errors
the order of 1023 or less.

1. Interaction energy

We determine the exact interaction energy of the colloi
particles by inserting the numerically determined expansi
~26! in the equilibrium free energy~13!. The behavior of the
exact interaction energy was studied in some detail in@16#.
Here, we concentrate on its comparison with the asympt
expression~40!, to validate the latter. We set

F int5F int
` ~11D!, ~46!

where D measures the relative error from the asympto
solution. In Fig. 5 we show the behavior ofD as a function
of the distance to contactd22R for small particles (R52)
and various anchoring strengthw. As it is seen, the
asymptotic approximation is quite good up to distances
contact of the order ofj. For low anchoring strengthw
,1, the actual interaction energy is larger than t
asymptotic value. For high anchoring strengthw.1, the ac-
tual interaction is smaller. The best agreement is for anc
ing strength of the order ofw51, for which the relative error
increases up to 0.6 at particle contact.

FIG. 5. Absolute value of the relative errorD of the asymptotic
interaction energy as a function of the distance to contactd22R for
R52 and various values of the reduced anchoringw. The solid
lines indicate thatD.0 and the dashed lines indicate thatD,0.
x

te
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For relatively large particles (R520), the relative errorD
becomes even smaller, as shown in Fig. 6. It is remarka
that aroundw51 the asymptotic approximation gives e
tremely good results up to contact for larger spheres.

2. Texture around two particles

According to Eqs.~25! and ~23!, the eigenvalues assoc
ated with the eigenvectors~21! of the order-parameter tenso
are

l1~r ,u!

S0
5

a~r ,u!1g~r ,u!

4

1AFa~r ,u!23g~r ,u!

4 G2

1b2~r ,u!,

~47a!

l2~r ,u!

S0
5

a~r ,u!1g~r ,u!

4

2AFa~r ,u!23g~r ,u!

4 G2

1b2~r ,u!,

~47b!

l3~r ,u!

S0
52

a~r ,u!1g~r ,u!

2
, ~47c!

while the angleQ(r ,u) that the eigenvectore(1) makes with
respect to thez axis is

FIG. 6. As Fig. 5, but for spheres of radiusR520.
Q~r ,u!5tan21Fa~r ,u!23g~r ,u!1A@a~r ,u!23g~r ,u!#2116b2~r ,u!

4b~r ,u!
G . ~48!
atic
r
e

Far from the particles, or for an isolated particle, the te
ture is uniaxial, withl25l3. The paranematic directorn
thus coincides with the eigenvectore(1) @see Eq.~21a!# asso-
ciated withl1, which is the eigenvalue of largest absolu
-value. Therefore, by continuity, we choose as paranem
directorn the directione(1). In general, however, the tenso
order-parameterQ is biaxial and is characterized by th
uniaxial scalar order-parameterS in the direction of the
4-9
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GALATOLA, FOURNIER, AND STARK PHYSICAL REVIEW E67, 031404 ~2003!
paranematic director and by the biaxialityB in the plane
orthogonal to it. They are defined by setting in the diago
frame (e(1),e(2),e(3)), in which Q5diag(l1 ,l2 ,l3), Q
5diag(2/3S,21/3S1B,21/3S2B) @22#. Therefore,

S~r ,u!5 3
2 l1~r ,u!, ~49a!

B~r ,u!5 1
2 @l1~r ,u!12l2~r ,u!#. ~49b!

In Fig. 7, we have plotted the contour lines of the sca
order parametersS ~top! andB ~middle!, and the field lines
of the paranematic directorn ~bottom! for small spheres, i.e.
R52. In Fig. 8, we have plotted the same parameters
large spheres, i.e.,R520. When the two spheres are close
each other, the scalar order parameter makes a diffuse co
around the two spheres for the small spheres, whereas
significantly nonzero only in the gap between the spheres
the large ones. The biaxiality is maximum in the vicinity of
ring which defines a defect, of topological charge21/2, of
the paranematic directorn. The defect location correspond
to the conditionS5B, i.e., l15l2 @see Eqs.~49!#: the two
orthogonal directione(1) ande(2) in the symmetry planePP
~the plane of Fig. 2 containing thez axis and the generic
point P) become equivalent. Strictly speaking, at the def
location the texture again becomes uniaxial, with a para
matic director orthogonal to thePP plane and a discoticlike
order. The main difference between the small and the la
spheres is that the defect is in the region whereS is large in
the former case, whereas it is located in a region whereS is
almost zero in the latter. Regarding the texture, one can
that the field lines are rather smoothly bent in the case
small spheres, while for large ones they start almost radi
from the particles and present a kink in the midplane, in
region whereS is small.

3. Defect position

The defect ring is located in the planez50 of Fig. 2. On
this plane,b50 for symmetry reasons. Then, the location
the defect, which corresponds to the conditionl15l2, ac-
cording to Eqs.~47a! and ~47b! is such thata(r ,u5p/2)
53g(r ,u5p/2). Let us calculate asymptotically, ford@1,
the defect position. At the zeroth order, the totalQ tensor is
the superposition of theQ tensors of the two isolated pa
ticles. Then, one easily finds that the defect is located
radial distanceh5d/2 from the axis joining the centers o
the particles. This corresponds to a defect ring having a
ameter equal to the distance between the centers of the
spheres.

To verify this lowest-order prediction, in Fig. 9 we plo
the ratio between the ring diameter 2h and the distance be
tween the two spheres as a function of the distance to con
d22R. As one sees, the approximate estimation is rat
good: for lower anchoring strength, the defect diamete
actually slightly larger, while for higher anchoring it i
smaller. The deviation from the lowest-order solutionh
5d/2 decreases as the spheres move further apart or be
bigger. In this case, the defect ring lives in a region where
order-parameter is small.
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VI. FLOCCULATION TRANSITION

Section V C 1~see also Ref.@21#! and the Yukawa poten
tial of Eq. ~40! show that for large particles (R@1), the
two-particle interaction mediated by the nematic wetti
layer ~in the following abbreviated byULC) is dominated by
its strong attractive part. The consequences of this featur
the stability of a dispersion of colloidal particles were inve
tigated in detail by Borsˇtnik, Stark, and Zˇumer in Ref.@20#.
The main idea was to use, e.g., the screened electros
interaction of charged particles to stabilize a colloidal s
pension against the attractive van der Waals interaction w
above the nematic-isotropic phase transition. Then by low
ing the temperature towards the transition temperatureTc ,
which increases both the strength and range of the liqu
crystal ~LC! mediated interaction, a flocculation transitio
can be induced, i.e., the particles start to aggregate. W
the transition itself has not been observed so far, the att
tive two-particle potential has been demonstrated in excel
experiments by Kocˇevar and co-workers using an atom
force microscope@30,31#.

In this paper, we study again the flocculation transition
two reasons. In Ref.@20#, the interaction potentialULC was
calculated by modeling the liquid-crystalline order with th
help of an ansatz function. A weak repulsive barrier inULC
occurred which seems to be an artifact in the construction
the ansatz function. Second, by using the analytic form of
Yukawa potential forULC , the calculation of the total inter
action energy becomes much easier. Therefore, in Sec. V
we shall discuss a flocculation diagram in terms of the r
evant parameters of the electrostatic interaction which cov
a much larger range than in Ref.@20#. We will, however,
confirm the flocculation diagram of Ref.@20#.

A. Two-particle interactions

In the following we consider a colloidal dispersion of pa
ticles subject to van der Waals (UW), electrostatic (UE), and
liquid-crystal induced (ULC) interactions, whereUW andUE
are taken according to the Derjaguin-Landau-Verwe
Overbeek~DLVO! theory @32,33#. In the first approach, we
assume that the surface-induced nematic order has no e
on UW andUE , so that the total two-particle potential can b
written asU tot5ULC1UW1UE .

To be concrete, we consider silica particles of radiusR
5250 nm dispersed in the liquid crystal 4
n-octyl-4’-cyanobiphenyl~8CB!. The van der Waals interac
tion between identical particles is always attractive. It rea
@34#

UW52
H

6 F 2R2

d224R2
1

2R2

d2
1 lnS d224R2

d2 D G , ~50!

whered is the center-of-mass separation of the particles
H51.1kBT is the Hamaker constant for silica particles su
pended in the compound 8CB@20#. Strictly speaking, via
retardation effects, the Hamaker constant also depends o
separationd @34#. However, in our problem this dependen
is not crucial@20#. Note that in the followingwe do not use
reduced units: all physical quantities keep their dimension
4-10
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We stabilize the colloidal dispersion by electrostatic
pulsion. The particles possess an electrical surface ch
densityqs , and monovalent salt of concentrationnp is added
to the solvent. This results in the two-particle potential@34#

UE52
8p2

«2

Rqs
2

k2
ln~12e2k(d22R)!. ~51!

The range of the interaction is determined by the Deb
lengthk215@«2kBT/(8pe2np)#1/2, where«2 denotes the di-
electric constant of the solvent ande is the fundamenta
charge. Note that Eq.~51! is derived in the Derjaguin ap
proximation under the assumptiond22R,k21!R. For real-
istic values ofk21 andqs , see Refs.@20,31#.

To include the liquid-crystal mediated interaction, we u
the Yukawa potential of Eq.~40!. The latter, restoring to al
the physical quantities their dimensions, is given explici
by

FIG. 7. Paranematic order parameter between two spheres
reduced radiusR52 and reduced anchoringw54. Top: contour
lines of the scalar order parameterS. Middle: contour lines of the
biaxiality parameterB. bottom: field lines of the paranematic dire
tor n.
03140
-
ge

e

e

ULC52
8p

3
Lj2~S0A!2

e2(d22R)/j

d
, ~52!

where the amplitudeA must be calculated according to E
~18!, with R substituted byR/j and with w5W/@La(T
2T* )#1/2 the reduced surface coupling constant. We rec
also that the nematic coherence length is given byj
5@L/„a(T2T* )…#1/2. In Sec. V C, it was shown that fo
large particle radii, the Yukawa potential agrees well with t
numerical results down to a distance to contact of the or
of j. Even for smaller distances, it gives a good approxim
tion to the interaction energy. We use Eq.~52! to obtain an
estimate for the strength of the Yukawa potential in the c
R@j,

uULC~d52R!u.
4p

3
LRS0

2S w

w11D 2

. ~53!

ith

FIG. 8. Same as Fig. 7, but forR520.

FIG. 9. Ratio between the defect ring diameter 2h and the dis-
tance between the spheresd as a function of the distance to conta
d22R of the spheres. Full lines,R52; dashed lines,R55. The
two upper curves are for a normalized anchoring strengthw50.1
and the two lower ones are forw54.
4-11
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The rational function in the reduced surface coupling c
stant w is monotonously growing likew2 for small w and
approaching one at largew. Therefore, we find that the
strength of the Yukawa potential increases, like its rangej,
when the temperature is lowered towards the nema
isotropic phase transition atTc . For example, for the mate
rial parameters chosen immediately below, we find that
strength increases by a factor of 6 when cooling down fr
Tc110 K to Tc . When discussing the effect of the intera
tion ULC , we shall use the parameters of 8CB@a50.12
3107 erg/(cm3K), L51.831026 dyn, Tc2T* 51.3 K,
and Tc5314.8 K], which give a coherence lengthj(Tc)
510.74 nm at the phase transition. Furthermore, we cho
W51.25 erg/cm2 and S050.45, in accord with Ref.@20#.
Finally, all interactions in the following section are referre
to the thermal energykBT at room temperature, and, as a
ready mentioned, the particle radius is 250 nm.

B. Flocculation diagram

When discussing the total interaction energy for vary
parameters, we will find different shapes of the two-parti
potential which affect the flocculation transition. Particl
start to aggregate when the interaction potential exhibit
minimum Umin,0 at finite distances. If the potential min
mum is shallow, i.e., just severalkBT deep, a particle double
will break up again, and a phase equilibrium of an agg
gated and dispersed state occurs@34#. The higher potential
energy in the dispersed state is compensated by the la
entropy. On the other hand, whenuUminu tends to 10kBT or
even higher values, strong attraction occurs that leads
nonequilibrium phase with all the particles aggregated. T
corresponds to the flocculation transition that we aim to
vestigate. As a further feature of our interaction potentia
we will also encounter potential barriers which slow dow
the flocculation or even ‘‘kinetically stabilize’’ the dispe
sion.

Obviously, the observation of a flocculation transition is
matter of time scale on which the experiments take pla
The theory of aggregation kinetics determines the charac
istic timet for the formation of a particle doublet as@34,35#

t5
1

f

R2

6D0
I , ~54!

where the factorI is given by

I 52RE
smin

` D0

D~s!

exp~U tot /kBT!

~2R1s!2
ds, ~55!

which contains the ratio

D~s!

D0
5H 2s/R for s!R

1 for s@R.
~56!

In Eq. ~54!, f is the volume fraction of the particles in th
solvent, andD05kBT/(6phR) is the single-particle diffu-
sion coefficient depending on the solvent viscosityh. For
particles that stick together when they meet but otherwise
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not interact (I 51), t is given by the time an independen
particle needs to diffuse a distanceR times the inverse vol-
ume fraction f. Clearly, in a very dilute dispersion (f
small!, particles hardly come close to each other and dou
formation is very rare. The factorI, wheres5d22R denotes
the distance to contact, incorporates influences from the t
particle interaction; in the presence of a potential barriert
increases considerably even for moderatef. The ratio
D0 /D(s) takes into account corrections of the diffusion co
stant due to hydrodynamic interactions. Note thatsmin gen-
erally meanss50, i.e., the particles stick together at dire
contact. If, however, for very small particle separations
strong repulsion sets in,smin is taken as the location of th
potential minimum which is responsible for the formation
the particle doublet.

In the following, we assume a volume fractionf50.1 so
that for a typical shear viscosity of 0.4 P we arrive att/I
55 s. We say that a dispersion is kinetically stabilized by
potential barrier ift.1 h, which corresponds toI 5720.
With the help of the algebraic program Maple, we have n
merically calculated the factorI for our potentialU tot to
check when such a kinetic stabilization in the flocculati
diagram, to be discussed below, sets in. In this way, we h
determined the transition lines between regions I–III a
III–IV in Fig. 10. To gain further insight into the factorI, we
perform a saddle-point approximation. We replaceU tot by its
harmonic approximation around the maximumUmax of the
potential barrier. Then we can evaluate the integral in
~55! when we approximates by smax otherwise and choose
smin50. From the magnitude of the curvaturec05
2]2U tot /]s2usmax

, we deduce a characteristic lengthj

5(2kBT/c0)1/2 and make the approximation of replacin
smax by j which finally gives the estimate I
5exp(Umax/kBT)/2. From our criterion for kinetic stabiliza
tion, I 5720, we findUmax57.3 kBT. Surprisingly, in most
cases the exact calculation of the integral in Eq.~55! gave
potential barriers withUmax between 7 and 8kBT. This dem-
onstrates that the Boltzmann factor is the determining qu
tity in I and therefore int.

FIG. 10. Flocculation diagram in terms of the tunable para
eters of the electrostatic interaction, i.e., the surface charge de
qs and the Debye lengthk21. The four different regions I–IV char-
acterize how a colloidal dispersion of charged particles reacts
ULC . The points~a!–~e! refer to the diagrams in Figs. 11 and 12
4-12
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FIG. 11. Total two-particle potential in units ofkBT as a function of distance to contactd22R. The potentials are shown for differen
parameters of the electrostatic interaction, as indicated in the inset, and at various temperatures relative toTc . The labels~a!–~d! refer to a
location in the flocculation diagram of Fig. 10.
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We will also encounter two-particle interactions where t
particle doublet settles into a potential minimum without t
versing a potential barrier. Here the question arises h
stable the doublet is. Unfortunately, the familiar Kramers r
@36# is not applicable, since it involves the curvature of t
potential maximum over which a particle escapes. In
case, this potential maximum is located at infinity (U tot
50). It has zero curvature, which gives an infinite esca
time. The theory for our problem formulates the escape t
as a double integral over the particle separation@37# that
cannot be calculated straightforwardly. However, we c
give an upper bound for the escape time@37#, defined as the
time tdiff that a particle needs to diffuse a distanceR when
leaving a potential well of depthU0,

tdiff5
R2

6D0exp~2U0 /kBT!
. ~57!

Again, we consider a particle doublet as stable whentdiff
exceeds 1 h, which for the parameters already introdu
results in a potential depth ofU059kBT. Compared to the
free diffusion timeR2/(6D0)50.5 s, it enhancestdiff by a
factor of 7200. We used this criterion to establish the bou
ary line between regions II and III in Fig. 10.

In the following, we discuss in detail the flocculation di
gram of Fig. 10~calculated for a particle radiusR of 250
03140
-
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nm!. It is plotted in terms of the tunable parameters of t
electrostatic interaction, i.e., the surface charge densityqs

and the Debye lengthk21. We distinguish four regions: in
region I the particles are completely aggregated withoutULC

since the electrostatic interaction is not sufficient to stabil
the dispersion against the van der Waals force. For la
surface charge density and interaction range, as in regio
the dispersion is completely stabilized even ifULC is turned
on. A potential minimum at finite distances does not occur
it is not deep enough, according to our discussion above
trigger flocculation. Both regions are separated by areas
and IV. In region III, flocculation is induced by lowering th
temperature towardsTc . Different types of interaction poten
tials occur which are illustrated in Fig. 11 for various loc
tions in the flocculation diagram of Fig. 10 labeled~a!–~d!.
In Fig. 11~a!, the graph forT@Tc exhibits the usual ‘‘pri-
mary minimum’’ at short distances due to the van der Wa
interaction which is followed by a ‘‘primary potential bar
rier’’ for increasing separations well known in colloids sc
ence. The electrostatic repulsion is just strong enough to
bilize the colloidal suspension kinetically. Lowering th
temperature reduces the barrier and induces flocculat
Moving down the diagonal from left to right in the floccula
tion diagram, we arrive at location~b!. In the corresponding
Fig. 11~b!, the primary minimum atT@Tc is no longer vis-
ible due to the increase in the surface charge density.
4-13
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induce flocculation, one has to cool the dispersion close
Tc . Moving further down the diagonal, a shallow potent
minimum at around 26 nm appears atT@Tc , as illustrated in
Fig. 11~c!, which leads to a slight phase coexistence. Ho
ever, a clear nonreversible aggregation of the particles
be induced when the temperature is decreased. A diffe
feature occurs in Fig. 11~d!, which is located close to the
transition line to the stabilized dispersion; whereas in
previous cases the flocculation transition sets in gradu
with decreasing temperature, here a sudden transition is
servable within a few ten kelvins. Crossing the transition l
from location ~d!, the minimum atT5Tc becomes more
shallow and ultimately vanishes. Region IV in the floccu
tion diagram of Fig. 10 identifies a kinetically stabilized di
persion. As illustrated by Fig. 12, atT5Tc , a minimum in
the total interaction energy is separated from large distan
by a potential barrier which prevents the formation of sta
particle doublets. The interaction becomes totally repuls
when moving into region II.

VII. CONCLUSIONS

In this paper, following previous works@15–17,20,21#,
we have reconsidered the interactions between spherical
loids wetted by a corona of paranematic order in the iso
pic phase of a nematogenic material. We have calculated
contribution to the total interaction that is mediated by t
paranematic order, assuming a radial anchoring of the di
tor. Our results, based on a quadratic approximation of
free-energy density, are exact in the limit of weak induc
paranematic order if the temperature is not too close to
nematic-isotropic phase transition. We have obtained ana
cal results in the asymptotic regime where the distance
tween the colloids is large with respect to the cohere
lengthj of the nematic order, and numerical results for a

FIG. 12. Total two-particle potential in units ofkBT as a func-
tion of distance to contactd22R. The potential is shown at variou
temperatures relative toTc . The parameters of the electrostatic i
teraction is shown in the inset. The label~e! refers to a location in
the flocculation diagram of Fig. 10.
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separation. For large separations, the interaction follows
Yukawa-like potential given by Eq.~40!, which can be ex-
plained on simple grounds. Our numerical results show t
for colloids large as compared toj, this simple potential is
actually a very good approximation even up to separation
the order ofj. We obtain attractive interactions for colloid
much larger thanj and the possibility of short-range repu
sions for colloids of size comparable toj. We have discussed
the paranematic texture between two colloidal particl
showing the appearance of a defect of the paranematic d
tor, in the form of a ring of topological charge21/2 located
in the midplane of the two particles. The diameter of the ri
is approximately equal to the distance between the cente
the two particles, which is easily explained by supposing t
at the lowest order the total paranematic tensor is the su
position of the paranematic tensors for the two isolated p
ticles. The ring is surrounded by a sheath of biaxial orde

Finally, using the Yukawa-like expression~40! for the
paranematic interaction, we have examined the stability o
colloidal suspension by considering the interplay of t
paranematic interaction with the standard DLVO intera
tions, i.e., van der Waals attractions and double-layer ele
cal repulsions. We have found that the stability of a colloid
suspension can be significantly affected by the paranem
interaction: the latter can either trigger flocculation or kine
cally stabilize the suspension depending on the vicinity
the isotropic-nematic transition of the nematogenic solv
and on the DLVO parameters. These properties could
tested experimentally.

APPENDIX: DEFINITION OF THE SPHERICAL
HARMONICS

Among the various possible definitions of the spheri
harmonics, we use the form

Y,m~u,f!5A2,11

4p

~,2m!!

~,1m!!
P,

m~cosu!eimf, ~A1!

where theP,
m(cosu) are associated Legendre functions

the first kind,

P,
m~ t !5

~21!,1m

2,,!
~12t2!m/2

d,1m

dt,1m
~12t2!,. ~A2!

The Legendre functions obey the orthogonality relations

E
21

1

P,
m~ t !P,8

m~ t !dt5
~,1m!!

~,11/2!~,2m!!
d,,8 , ~A3!

whered,,8 is the Kronecker delta. These orthogonality re
tions imply the orthonormality of the spherical harmonics

E Y,m~u,f!Y,8m8
* ~u,f!sinududf5d,,8dmm8 . ~A4!
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