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Poisson-bracket approach to the dynamics of nematic liquid crystals
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We use the general Poisson-bracket formalism for obtaining stochastic dynamical equations for slow mac-
roscopic fields to derive the equations that govern the dynamics of nematic liquid crystals in both their nematic
and isotropic phases. For uniaxial molecules, we calculate the Poisson bracket between the tensorial nematic
order parameterQ and the momentum densityg, as well as those between all pairs of conserved quantities. We
show that the full nonlinear hydrodynamical equations for the nematic phase derived in this formalism are
identical to the nonlinear Ericksen-Leslie equations. We also obtain the complete dynamical equations for the
slow dynamics of the tensorial nematic order parameterQ valid both in the isotropic and the nematic phase.
They differ from those obtained by other techniques only in the values of kinetic coefficients and in the number
of nonlinear terms inQ, which are present.
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I. INTRODUCTION

Nematic liquid crystals are unique materials, since th
flow in all directions such as a homogeneous fluid and
they are optically anisotropic@1,2#. Their low-frequency dy-
namical properties, which are characterized by orientatio
relaxation as well as by shear and compressional flow@3–5#,
are central to the switching behavior of liquid crystal d
plays@6#. They give rise to interesting fundamental pheno
ena including electrohydrodynamical pattern formation@7#,
instabilities under shear flow@1,2#, orientational fluctuations
observable in light scattering experiments@8#, and the aniso-
tropic and nonlinear Stokes drag on a particle embedded
nematic solvent@9#. Nematic liquid crystals raise fundamen
tal questions about how broken symmetries affect lo
frequency hydrodynamics, and it is not surprising that o
the years there have been a number of derivations@3–5,1# of
the equations governing nematohydrodynamics. In this
per, we present a derivation of these equations, and of
equations governing the relaxation of the symmetr
traceless-tensor nematic order parameterQ @10–12,1# in both
the nematic and the isotropic phase. We use the Pois
bracket formalism of classical mechanics@13# developed in
the framework of stochastic equations for fluctuating mac
scopic field variables@14–18# and applied to dynamical criti
cal phenomena@19#.

Using the formalism of rational mechanics, Ericksen a
Leslie were the first to derive a full set of dynamic equatio
commonly referred to as Ericksen-Leslie equations@3,4#, for
the velocity and director fieldn specifying the direction of
nematic anisotropy. Later, the Harvard group argued that
interpretation of the dynamic equation for the director~the
so-called Oseen equation! as the balance law for the angul
momentum is not well justified@20#, and they presented
rigorous derivation of the linearized hydrodynamic equatio
starting from conserved and hydrodynamic Goldstone v
ables @5#. The full nonlinear theory based on this appra
was developed by Pleiner and Brand@21#. De Gennes
pointed out the common features of the two approaches@1#.
Recently, Sonnet and Virga rederived the Ericksen-Le
equations in the framework of a variational principle of Ra
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leigh starting from complex fluids with a general tensor
order parameter@22#.

The low-frequency hydrodynamics of the nematic pha
is determined entirely by the conserved densities, charac
izing both the isotropic and nematic phases, and the dire
n. There are, however, physical situations in which the
rector alone does not provide a complete description of
nematic orientational order, and a description in terms of
full nematic order parameterQ ~also called the alignmen
tensor@23#! is required. As a result, there has been an
creasing interest in dynamical equations both in the nem
and the isotropic phases in which the nematic order is
scribed byQ rather than byn alone. These equations nece
sarily include nonhydrodynamic modes, which nonethel
have characteristic relaxation times that are slow compa
to microscopic times. In conjunction with the Landa
Ginzburg–de Gennes free energy, they provide a descrip
of dynamical processes close to the nematic-isotropic ph
transition @23–26#, of processes in which the degree of o
dering can vary, e.g., by applying a shear deformation, o
processes in thin liquid crystal cells subject to large exter
fields @27#. They also provide a detailed description of th
dynamics of line and point defects@28,29# whose cores ex-
hibit a complex biaxial ordering which is beyond the simp
director picture@30#.

The first complete formulation of the dynamic equatio
involving the Q tensor was presented by Hess@23#. Subse-
quent refinements were carried out by Kuzuu and Doi, w
started from a molecular kinetic equation@31#, and by Olm-
sted and Goldbart@25#, who set up the dynamic equations
full analogy to de Gennes’s derivation of the Ericksen-Les
theory in Ref.@1#. In parallel, Edwards, Beris, and Grme
pioneered a derivation based on a Hamiltonian formulat
of continuum mechanics@32#. Further approaches to theQ
tensor dynamics are introduced in Ref.@27# by Qian and
Sheng, in Ref.@22# by Sonnet and Virga, and in Ref.@33# by
Pleiner, Liu, and Brand. The latter though purely pheno
enological is very close in spirit to the approach we pres
here.

The Poisson-bracket approach we adopt in this paper
several advantages. First, it automates the derivation
©2003 The American Physical Society09-1
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coarse-grained dynamical equations once the dynamic
variables are defined. As we shall see in the following, t
approach, however, requires more carefulness in nematic
uid crystals than it does in other systems such as mag
and superfluids. Second, the formalism applies to nonhy
dynamic slow variables as well as to true hydrodynamic v
ables. Third, it gives easy access to nonlinear terms, as
appear, e.g., in the convective derivative of the Navi
Stokes equations. The formalism has been applied to div
systems such as~anti!ferromagnets@19#, quasicrystals@34#,
or to nematic polymers@35# which demonstrate its universa
ity.

In the literature, different methods are used to calcul
the Poisson brackets. Volovik employs pure symmetry ar
ments@36,37# that are not sufficient to provide a full descrip
tion of nematic liquid crystals because it fails to prope
treat the degree of nematic ordering. Edwards, Beris,
Grmela on the other hand define their Poisson brackets
continuum level@38#.

Here, in contrast, we start from a microscopic definiti
of the field variables. Following the work of Forster@39#, we
introduce such variables for model-liquid-crystal molecu
made from point particles and employ the conventional d
nition from classical mechanics to arrive at coarse-grai
Poisson brackets for the macroscopic field variables. A c
ful treatment is needed to determine the central Pois
bracket between the alignment tensorQ and the momentum
density which extends the work of Forster@39#. We then
rederive the Ericksen-Leslie theory and rigorously justify t
Oseen equation. The Onsager and Parodi relations for
Leslie viscosities are automatically fulfilled@40#. We derive
generalized dynamic equations for the alignment tensor.
equations have the same form as those derived by Olm
and Goldbart@25# and those obtained by Pleineret al. @33#.
We obtain explicit forms for reactive coefficients that a
merely unspecified phenomenological coefficients in th
approaches. Our equations have terms not present in tho
Olmsted and Goldbart, and those of Pleineret al. contain
nonlinear terms that our equations do not.

The paper is organized as follows. In Sec. II, we introdu
the general formalism. In Sec. III, we define the molecu
model and calculate all relevant Poisson brackets. The
sets of dynamic equations for the director or theQ-tensor
dynamics are derived and discussed in Secs. IV and V,
spectively.

II. GENERAL FORMALISM

In this section, we summarize the general formalism
which our derivation of the dynamic equations in nema
liquid crystals is based. Let us consider systems whose
croscopic dynamics is determined by canonically conjug
variablesxa and pa for each particlea and a microscopic
Hamiltonian Ĥ($xa%,$pa%), where $xa%5x1, x2, . . . etc.
Here, we focus on a set of macroscopic field variab
Fm(x,t) for m51,2, . . . obtained from microscopic field

F̂m(x,$xa%,$pa%) by coarse graining over spatial fluctuatio

on the microscopic level;Fm(x,t)5@F̂m(x,$xa%,$pa%) #c ,
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where the symbol@•••#c specifies the coarse-grained ave
ages. The statistical mechanics of the fieldsFm(x,t) is de-
termined by the coarse-grained HamiltonianH@$Fm%#,
which is a functional of the macroscopic variables. It is co
structed in such a way that the statistical averages of obs
ables in the microscopic and the macroscopic representa
are identical. In formulas, this means

^ f ~$F̂m%!&5E D~xa,pa! f ~$F̂m!%)e2Ĥ/kBT

[^ f „$Fm~x,t !%…&

5E DFm~x,t ! f „$Fm~x,t !%…e2H/kBT,

where kB is the Boltzmann constant,T is the temperature
andD(xa,pa) andDFm(x,t) are integration measures. Th

observablef is a function of the microscopic (F̂m) or mac-
roscopic (Fm) fields. In practice, phenomenological form
for H@$Fm%# are used.

The macroscopic fieldsFm(x,t) describe the slow dy-
namic response of the system, i.e., they are either hydro
namic or quasihydrodynamic variables whose character
decay timest in the long-wavelength limit are much large
than microscopic decay times. Then, following the theory
kinetic or stochastic equations, the variables evolve acco
ing to @17–19#

]Fm~x,t !

]t
5Vm~x!2Gmn

dH
dFn~x!

, ~1!

where the reactive termVm(x) is also called nondissipative
or streaming velocity and the second term introduces di
pative effects. These equations, which can be rigorously
rived from microscopic principles following the works b
Zwanzig @14#, Kawasaki @15#, and Mori, Fujisaka, and
Shigematsu@16#, describe the low-frequency and the lon
wavelength dynamics of the system. When applied to an
tropic fluid, for example, they correctly reproduce the fu
nonlinear Navier-Stokes equations. Supplemented with
noise termzm(x,t), they provide a powerful formalism fo
calculating dynamical correlation functions in equilibriu
and, especially, for treating effects due to the coupling
tween modes. As such, the stochastic equations are use
tensively in the study of dynamical critical phenomen
where nonlinearities are important@19#. In this paper, we are
mainly interested in deriving the equations for the lo
frequency dynamics of the isotropic and nematic phase
liquid crystals, and we will not give any further conside
ation to the noise. Disregarding noise in Eq.~1! means that
nonequilibrium averages of the macroscopic field variab
are used@41#.

The concrete form of the reactive term involves Poiss
brackets which are the central quantity of this formalism
can be expressed as

Vm~x!52E d3x8Pmn~x,x8!
dH

dFn~x8!
, ~2!
9-2
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POISSON-BRACKET APPROACH TO THE DYNAMICS OF . . . PHYSICAL REVIEW E 67, 061709 ~2003!
where Einstein’s convention on repeated indices is und
stood and

Pmn~x,x8!5$Fm~x!,Fn~x8!%52Pnm~x8,x! ~3!

denotes the Poisson bracket of the coarse-grained varia
It is defined as the coarse-grained average of the microsc
Poisson bracket:

$Fm~x!,Fn~x8!%5@$F̂m~x!,F̂n~x8!%#c , ~4!

where@13#

$F̂m~x!,F̂n~x8!%5(
a i

]F̂m~x!

]pi
a

]F̂n~x8!

]xi
a

2
]F̂m~x!

]xi
a

]F̂n~x8!

]pi
a

. ~5!

Equation ~2! can be rigorously derived from microscop
principles @14–16#. Roughly speaking, it can be viewed a
the Poisson bracket$H,Fm% which in classical mechanic
describes the time evolution of an observable@13#. Applying
the chain rule to the derivatives of the Hamiltonian and n
ing thatFn is a field variable, the formal structure of Eq.~2!
results. However, since we only employ a restricted num
of coarse-grained macroscopic variables, all the ‘‘neglect
microscopic degrees of freedom give rise to the dissipa
term in the kinetic equation~1!. It is proportional to the
generalized forcedH/dFn(x) which together withFn(x)
forms a pair of conjugate variables. The quantityGmn is
called the dissipative tensor that, in general, may depend
the fieldsFm and that may also contain terms proportional
2“

2. It is determined by three principles. First,]Fm /]t can
only couple todH/dFn if it possesses a different sign und
time reversal, the signature of dissipation. Second,Gmn has
to reflect the local point group symmetry of the dynam
system, and third, it has to be a symmetric tensor at z
magnetic field to obey the Onsager principle@42#.

III. POISSON BRACKETS FOR NEMATIC
LIQUID CRYSTALS

Our goal is to use the formalism outlined above to der
the dynamical equations for the long-lived fields in a nema
liquid crystal and the isotropic phase from which the nema
phase develops. Our most important results are the Poi
brackets of Eqs.~4! and ~5!, which we will derive in this
section starting from an explicit microscopic model for t
constituent molecules.

Conserved fields are always hydrodynamical variables
cause their frequencies necessarily tend to zero with w
number. In systems with a continuous broken symme
there are additional broken-symmetry hydrodynamical v
ables. In addition, there can be modes that have characte
decay times that are much longer than any microscopic ti
even though they do not tend to infinity with wave numb
The conserved variables of both the isotropic and nem
phases are the mass densityr(x,t), the momentum density
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g(x,t), and the energy densitye(x,t), where the latter quan
tity will not be considered further in this paper. In the nem
atic phase, the Frank directorn(x,t) is the broken-symmetry
hydrodynamical variable with two independent degrees
freedom. As long as there are no topological defects pres
it is sufficient to describe the dynamics of the orientation
order byn(x,t). Otherwise, one has to resort to a more ge
eral order parameter that is able to quantify, e.g., the bia
ordering in the core of a topological defect. We will descri
nematic order with the conventional Saupe–de Gen
second-rank symmetric-traceless tensor parameterQ(x,t)
@10–12,1#, also called alignment tensor@23#. In the isotropic
phase, especially near the isotropic-to-nematic transit
Q(x,t) can be a slow variable whose relaxation to equil
rium is much slower than any microscopic collision time.
the nematic phase, it also contains slow, nonhydrodyna
components in addition to the hydrodynamic director va
able.

The complexity of nematic order presents problems
encountered in many other broken-symmetry systems s
as magnets and superfluids. Nematic order is associated
local molecular rigidity, and it only arises if constituent mo
ecules are anisotropic. A central quantity in our formalis
are the Poisson brackets between the alignment te
Q(x,t) or the directorn(x,t) and the momentum densit
g(x,t). However, in the following it will become obvious
that the calculation of these Poisson brackets is not strai
forward since neither the nematic order parameterQ nor the
directorn can be defined as simple coarse-grained avera
of microscopic quantities.

A. Model molecule and dynamic variables

Our system contains a number of identical model-liqu
crystal molecules indexed bya, which consist of a set of
mass points with massesmm and position vectorsxam. We
also introduce position vectorsDxam5xam2xa relative to
the location of the center of mass of each molecule atxa

5(m(mmxam)/m0, wherem05(mmm is the total mass of a
molecule. In our derivation of the Poisson brackets, it
important that the molecules are not rigid, but that their co
stituent atoms be allowed to fluctuate around their aver
positions. For simplicity, we will assume that the molecu
have a uniaxial shape in the sense that their moment of
ertia tensor, to be defined below, is also uniaxial. Consid
ing the fact that molecules perform fast rotations about th
long axis on a time scale of 10210s @43#, this is not a very
severe restriction. With our model we can describe a h
range of possible molecules ranging from needlelike obje
to molecules with prolate and oblate~disklike! shape. Even
globular polymers with anisotropic shape are included.

We employ the conventional microscopic definition of t
density of mass and momentum:

F̂15 r̂~x!5(
am

mmd~x2xam!, ~6!

F̂2245ĝ~x!5(
am

pamd~x2xam!, ~7!
9-3
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H. STARK AND T. C. LUBENSKY PHYSICAL REVIEW E67, 061709 ~2003!
which, after coarse graining, result in the macroscopic v
ables r(x)5@ r̂(x)#c and g(x)5@ ĝ(x)#c . Note that thed
function has the dimension of an inverse volume. We str
that the definition of the momentum density in Eq.~7! in-
cludes the motion of all mass points, including, in particul
rotational motion about the centers of mass of anisotro
particles.

To describe the orientational order of the molecules,
follow the approach of Forster@39# who extracted the aniso
tropic part from the density of the moment-of-inertia tens
and used its negative part as an additional microscopic fi
variable:

R̂i j ~x!5(
a

R̂i j
a d~x2xa!, ~8!

where for each moleculea we have

R̂i j
a 5(

m
mm@Dxi

amDxj
am2 1

3 ~Dxk
am!2d i j #. ~9!

The coarse-grained variableR(x)5@R̂(x)#c is a symmetric
and traceless tensor of second rank, as demanded fo
nematic order parameterQ(x), but it also depends on th
density of the molecules and, more important, it includes
fast fluctuations of the molecules around their average c
figuration, which we are not interested in. To arrive at
expression forQ(x), we note thatR̂i j

a is a tensor that for any
particular atomic configuration can be represented in a b
in which it is diagonal. Since this tensor is traceless, it h
only two independent eigenvalues, one of which descri
molecular biaxiality. Here, we will consider only molecule
that are, on an average, uniaxial. In any real molecule, th
will be fluctuations in which it becomes momentarily biaxia
We assume, however, that these fluctuations relax rapidl
nonhydrodynamic times. In this case,R̂i j

a is characterized by

a single parameter in addition to the unit vectorn̂a its
largest-eigenvalue principal axis. Then

R̂i j
a 5RaQi j

a , ~10!

where

Qi j
a 5 n̂ i

an̂ j
a2

1

3
d i j ~11!

is the local molecular alignment tensor andRa will be given
below. When this form ofR̂i j

a is valid, we can define the
coarse-grained position dependent Saupe–de Gennes
parameter via

Ri j ~x!5F(
a

R̂i j
a d~x2xa!G

c

5R~x!Qi j ~x!, ~12!

where

R~x![@R̂~x!#c5F(
a

Rad~x2xa!G
c

. ~13!
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The nematic order parameterQi j (x) must reduce toninj
2 1

3 d i j when all local axesn̂a are aligned along the spatiall
uniform directorn, and all molecules have the same value
Ra. It is straightforward to verify that the tensorQi j (x) de-
fined in Eq.~12! satisfies this constraint. Note that the fiel
Qi j (x) constitute the fieldsF529(x) in our formalism.

The parameterRa can easily and usefully be related to th
anisotropy in the molecular moment-of-inertia tensor

I i j
a 5(

m
mm@~Dxam!2d i j 2Dxi

amDxj
am#, ~14!

whose components parallel and perpendicular to the lo
anisotropy axisn̂a in a uniaxial system are, respectively,

I i
a5(

m
mm~Dx'

am!2, ~15!

I'
a5(

m
mm@~Dx'

am!2/21~Dxi
am!2#, ~16!

whereDx'
am and Dxi

am are, respectively, the component

Dxam parallel and perpendicular ton̂a. The anisotropyDI a

distinguishes between prolate (DI a.0) and oblate (DI a

,0) molecules. For uniaxial systems, we find

Ra5DI a[I'
a2I uu

a . ~17!

Only after calculating the Poisson brackets~see Sec. III C!,
can we safely replaceRa by its averaged valueDI , since, in
microscopic times,Ra of different molecules relax to the
same valueDI . In this case, we can replaceR(x) with

R~x!5
DI

m0
r~x!. ~18!

Then, Eq. ~12! results in the conventional definition o
Qi j (x), whereQi j

a @see Eq.~11!# is averaged over many mol
ecules. In what follows, we will also use

Tr Ia5I 5I uu12I' , ~19!

where the final form is in the uniaxial case we consider wh
all fast modes have relaxed.

We stress that our approach is a generalization of the
describing a simple flexible diatomic molecule in which t
principal moments of inertia fluctuate and therefore hav
nonvanishing Poisson bracket with the momentum dens
Our quantityR̂(x) incorporates these fluctuations for a mo
complex molecule. As we will see below, the Poisson bra
ets ofR̂(x) with the momentum density will give rise to on
additional term in the analogous Poisson brackets ofQ(x).
This essential contribution was not taken into account
Forster @39# who consideredR(x) as a constant. Instead
R̂(x) is a dynamic quantity since it depends on the m
density of the molecules through thed functions in Eq.~13!
and, more importantly, also reflects the fluctuations in
anisotropyRa of the molecular moment of inertia tenso
Whereas the dependence on the mass density only prod
9-4
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a term in the Poisson brackets ofQ(x), which is irrelevant
for incompressible fluids, the fluctuations inRa give rise to
the essential contribution just mentioned.

B. Poisson brackets

In calculating the Poisson brackets according to Eq.~5!,
we use the following properties of thed function:

d~x2x8!5d~x82x!, ~20a!

f ~x!d~x2x8!5 f ~x8!d~x2x8!, ~20b!

¹ id~x2x8!52¹ i8d~x2x8!, ~20c!

where¹i5]/]xi , ¹i85]/]xi8 and f (x) is an arbitrary func-
tion including thed function itself. Furthermore, we emplo
the antisymmetry relation of Eq.~3!.

In the following, we list all the Poisson brackets with
nonzero value, briefly explain their meaning, and comm
on their consequences. The evaluation of the Poisson br
ets is straightforward, except for$Qi j (x),gk(x8)% which we
illustrate in the following subsection.

We start with the dynamics of the mass densityr(x) for
which we need

$r~x!,gi~x8!%5¹id~x2x8!r~x8!. ~21!

Using the kinetic part of the Hamiltonian,*d3x g2/(2r), and
the definition of velocity,v i5dH/dgi5gi /r, the dissipative
velocity from Eq.~2! results inV1(x)5Vr(x)52¹ igi(x).
Since the the mass-conservation law does not allow
a dissipative contribution (G1n50), we arrive at ]r/]t
52divg(x).

For the dynamics of the alignment tensor, we need
Poisson bracket ofQi j (x) with gk(x). In agreement with
general phenomological arguments@33#, we find that this
Poisson bracket can be expressed as

$Qi j ~x!,gk~x8!%5@¹kQi j ~x!#d~x2x8!

2l i jkl ~x!¹ ld~x2x8!. ~22!

Its derivation is illustrated in Sec. III C.l i jkl depends on the
order parameterQi j , and in our calculation it is given by

l i jkl 5
1

2
~d ikQjl 2d i l Qjk1d jkQil 2d j l Qik!

1
I

6DI ~d ikd j l 1d i l d jk2 2
3 d i j dkl!

1
1

2
~d ikQjl 1d i l Qjk1d jkQil 1d j l Qik2 4

3 d i j Qkl!

2
2

3
dklQi j 2S 11

I

2DI DQi j Qkl . ~23!

Note thatl i ikl 50 sinceQii 50. In deriving Eqs.~22! and
~23!, we have omitted derivative terms of order““ and
higher. In the nondissipative velocity forQ, the first term on
06170
t
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r

e

the right-hand side of Eq.~22! produces the convective de
rivative vk¹kQi j , and the second term gives rise to a rea
tive coupling to¹ lvk . All but the last term ofl i jkl in Eq.
~23! were basically derived by Forster in Ref.@39#. Since he
did not take into account the dynamics of the scalar varia
R(x), he missed the second-order term inQ that results from
the dynamics of the anisotropyRa. Furthermore, the prefac
tor of the termQi j dkl was 21. Note that this expression
Qi j dkl is irrelevant for incompressible fluids. The term in th
first line of Eq. ~23! is the only one that is antisymmetri
under interchange ofk and l. Its form is entirely dictated by
rotational symmetry, and there can be no other terms a
symmetric ink and l. The prefactors depending onI /DI in
the second and fourth lines reduce, respectively, to 1/3 an
in the case of an infinitely thin needle. Our form ofl i jkl
agrees with that determined by Pleiner, Liu, and Brand@33#
using phenomenological symmetry arguments. Their exp
sion, however, contains five additional terms of second or
in Q, which our calculations do not produce. In addition, w
find specific values for the coefficients of the second throu
the fourth lines of Eq.~23!, which they view as phenomeno
logical parameters. The more general form considered
Pleineret al. is clearly permitted by symmetry, and one ca
ask how it can arise from a microscopic model. It is almo
certain that mode coupling will renormalize our coefficien
and produce the additional terms of second order inQ, but it
is difficult at this point to estimate how large these mod
coupling corrections would be. It is also possible that m
lecular biaxiality will lead to additional second-order term
we have not investigated this question in detail. In what f
lows, we will continue to use the specific form produced
our Poisson-bracket calculation.

Finally, several nondissipative terms for the momentu
balance equation follow from

$gi~x!,r~x8!%5r~x!¹ id~x2x8!, ~24a!

$gi~x!,Qjk~x8!%52@¹ iQjk~x!#d~x2x8!

2¹ ld~x2x8!l jki l ~x8!, ~24b!

$gi~x!,gj~x8!%52¹ i8@d~x2x8!gj~x8!#

1¹ jd~x2x8!gi~x8!. ~24c!

From the kinetic part of the Hamiltonian, Eqs.~24a! and
~24c! generate the divergence of the momentum flux ten
gigj /r. From Eq.~24a! and the first term in Eq.~24b!, the
divergence of an elastic stress tensor including the pres
results. Finally, the second and third terms in Eq.~24b! pro-
duce an elastic coupling to the molecular fielddH/dQi j of
the liquid crystal.

C. Derivation of the central Poisson bracket

In this section, we present the derivation of the cent
Poisson bracket $Qi j (x),gk(x8)%. We start with
$Ri j (x),gk(x8)%, introduce the definition of the alignmen
tensor from Eq.~12!, Ri j (x)5R(x)Qi j (x), apply the product
rule for Poisson brackets, and finally arrive at
9-5
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$Qi j ~x!,gk~x8!%5
1

R~x!
$Ri j ~x!,gk~x8!%

2
Qi j ~x!

R~x!
$R~x!,gk~x8!%. ~25!

Calculating the single Poisson brackets, we employ

]Dxi
bn

]xj
am

5dabd i j S dmn2
mm

m0
D , ~26!

]d~x2xb!

]xj
am

52¹ ld~x2xb!dab
mm

m0
, ~27!

where, in the course of the manipulations,mm/m0 either
sums up to one or gives a vanishing term due to the de
tion of the center of mass:(mmmDxam50. We also use a
Taylor expansion of thed function,

d~x2x81Dxam!5d~x2x8!1Dxl
am¹ ld~x2x8!

1O~Dx2¹2!, ~28!

where O~¯! means ‘‘order of.’’With these comments, th
evaluation of the Poisson bracket forR̂i j (x) is straightfor-
ward and the coarse-grained result reads

$Ri j ~x!,gk~x8!%5@¹kRi j ~x!#d~x2x8!1O~Dx2¹2!

1@Ri j ~x!dkl1
2
3 Rkl~x!d i j

2Rjl ~x!d ik2Ril ~x!d jk#¹ ld~x2x8!

2Rt~x!~d ikd j l 1d jkd i l 2
2
3 d i j dkl!

3¹ ld~x2x8!, ~29!

where

Rt~x!5
1

6 F(
a

Tr Iad~x2xa!G
c

. ~30!

As we discussed earlier, the components of the momen
inertia tensors Ia relax in microscopic times to thei
molecule-independent valueI with componentsI uu andI' . In
this limit, we have

Rt~x!5
I

6DI
R~x!. ~31!

To complete our calculation of$Qi j (x),gk(x)%, we need to
evaluate$R(x),gk(x)%. To do so, we use the relation

R̂i j
a R̂i j

a 5 2
3 ~Ra!2 ~32!

to calculate

$Ra,pk
am%5 3

2 ~Ra!21R̂i j
a$R̂i j

a ,pk
am%. ~33!

Using this result andRa5DI a, we obtain
06170
i-

f-

$R̂~x!,ĝi~x8!%5¹ i@R̂~x!d~x2x8!#1O~Dx2¹2!

2(
a

3

DI a S R̂ik
a R̂k j

a 1
I a

6
R̂i j

a D
3d~x2xa!¹ jd~x2x8!. ~34!

From Eq.~10!, we find

R̂ik
a R̂k j

a 5 1
3 DI aR̂i j

a 1 2
9 ~DI a!2d i j . ~35!

So after coarse graining, Eq.~34!, and replacingI a by I and
DI a by DI , we obtain

$R~x!,gi~x8!%5¹i@R~x!#d~x2x8!1O~Dx2¹2!

2F S 11
I

2DI DRi j ~x!2
1

3
R~x!d i j G

3¹ jd~x2x8!. ~36!

Finally, combining Eqs.~29! and~36! in Eq. ~25! leads to the
Poisson bracket$Qi j (x),gk(x8)% of Eqs.~22! and ~23!.

IV. DERIVATION OF DIRECTOR DYNAMICS

In the nematic phase, the orientational order is uniax
and the alignment tensor assumes the form

Qi j ~x!5@Q̂i j ~x!#c5S~x!@ni~x!nj~x!2d i j /3#, ~37!

where, on an average, the molecules point along the dire
n(x). Projecting Q on ninj in the definition @R̂i j (x)#c

5R(x)Qi j (x), and usingR̂i j
a from Eq. ~10! and R(x) from

Eqs. ~18! gives the conventional Maier-Saupe order para
eter

S~x!5
m0

r~x! F(
a

3

2 S cos2qa2
1

3D d~x2xa!G
c

, ~38!

whereqa is the angle of the principal axis of the moleculea
relative to n(x) and m0 is the molecular mass. Note tha
@•••#c means coarse graining over distances much lar
than the molecular scale so thatS is defined by averaging
over many molecules. The prefactorm0 /% has to appear,
since S should not depend on the number density of t
molecules.

A. Poisson brackets for the director

To derive the dynamic equations in the nematic ph
with its constantS(x), we need the Poisson brackets for t
director. However, a direct microscopic definition of the d
rector such thatn(x)5@ n̂(x)#c does not exist. The director i
only defined via the alignment tensorQ in Eq. ~37!. We
therefore employ the macroscopic Poisson brac
$Qi j (x),gk(x8)%, insert the uniaxial alignment tensor of E
~37!, and apply the product rule for Poisson brackets:
9-6
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$Qi j ~x!,gk~x8!%5@ni~x!nj~x!2 1
3 d i j #$S~x!,gk~x8!%

1S~x!ni~x!$nj~x!,gk~x8!%

1S~x!nj~x!$ni~x!,gk~x8!%. ~39!

Taking the trace of this equation with respect toi , j and pro-
jecting it on ni(x) and nj (x), respectively, we obtain the
relations

2S~x!ni~x!$ni~x!,gk~x8!%50, ~40a!

2$S~x!,gk~x8!%5$Qi j ~x!,gk~x8!%ni~x!nj~x!. ~40b!

Taking the dot product of Eq.~39! with ni(x) and using Eqs.
~40! give the director-momentum Poisson bracket

$ni~x!,gj~x8!%5
1

S
d ik

T $Qkl~x!,gj~x8!%nl~x!, ~41!

where

d i j
T 5d i j 2ninj ~42!

is the projector on the space perpendicular ton(x). It has to
appear since the derivative]n/]t has to be perpendicular t
n itself due ton251. After insertion of Eq.~22! into Eq.
~41!, we arrive at the final expression

$ni~x!,gj~x8!%5@¹ jni~x!#d~x2x8!2l i jk~x!¹kd~x2x8!,

~43!

with

l i jk5d i l
Tnml lm jk /S

5 1
2 ~d i j

T nk2d ik
T nj !1 1

2 l~d i j
T nk1d ik

T nj !, ~44!

where

l5
1

3 S 11
I

DI

1

SD ~45!

denotes a reactive coefficient. It depends on the Maier-Sa
order parameter and, in addition, on the molecular par
etersI and DI . It agrees with Forster’s result so the add
tional dynamic variableR(x) does not affect its value@39#.
In the case of needlelike molecules,I /DI 52 and l5(1
12/S)/3. If, in addition, all the molecules are complete
aligned (S51), we obtain l51 and l i jk5d i j

T nk . This
agrees with Volovik’s result, who derived the Poisson brac
for the director on pure symmetry arguments@37#, but it also
demonstrates that the symmetry arguments are not suffic
for determining Poisson brackets in complex media. Fina
the Poisson bracket that enters the momentum balance r

$gi~x!,nj~x8!%52@¹ inj~x!#d~x2x8!

2¹kd~x2x8!l j ik~x8!. ~46!
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B. Nondissipative velocities

To calculate the nondissipative velocities from Eq.~2!, we
need the Hamiltonian

H5E g2~x!

2r~x!
d3x1F@r~x!,n~x!#. ~47!

It consists of a kinetic part and a free energyF@r(x),n(x)#
5* f (r,n,“n)d3x, which is Frank’s free energy plus a term
purely depending onr.

In Sec. III B, we have already calculated the nondissi
tive velocity for the density of mass asVr52div g(x). For
the director, we obtain with Eq.~43!,

Vi
n52v~x!•¹ni~x!1l i jk~x!¹kv j~x!. ~48!

The first term on the right-hand side is the convective deri
tive of n and the second term introduces a reactive coup
to the deformation rate. Note thatn•Vn50, as it should be
sincen is a unit vector. The most complex term is the no
dissipative velocity of the momentum density. It emplo
Eqs.~24a!, ~24c!, and~46! to get

Vi
g52¹ jFgi~x!gj~x!

r~x! G2r~x!¹ i

dF

dr~x!
1@¹ inj~x!#

dF

dnj~x!

1¹kFl j ik~x!
dF

dnj~x!G . ~49!

The divergence of the momentum flux tensor originates fr
the kinetic part of the Hamiltonian; a surface term has be
dropped since we are only interested in bulk properties. T
fourth term introduces an elastic coupling to the molecu
field dF/dn. The second and the third term can be rewritt
such~see the Appendix! that the pressure

p5r
] f

]r
2 f ~50!

and the elastic stress tensor

s i j
0 52

] f

]¹ jnk
¹ ink , ~51!

known from the Ericksen-Leslie equations, appear. The n
dissipative velocity finally reads

Vi
g52¹ jFgi~x!gj~x!

r~x! G2¹ i p1¹js i j
0 1¹kFl j ik~x!

dF

dnj~x!G .
~52!

C. Dissipative terms

In this section, we collect the dissipative terms for t
dynamic equations following the rules outlined in Sec.
For the mass densityr no such term appears since it obeys
conservation law.

The time derivative]n/]t couples to conjugate force
with a different sign under time reversal. A possible te
involving dH/dr cannot occur since the dissipative tensor
9-7
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a vector pointing alongn due to symmetry, thus violating th
requirement that]n/]t'n. A second dissipative term intro
duces a coupling todH/dni5dF/dni :

2
1

g
d i j

T dF

dnj
, ~53!

whereg is a rotational viscosity.
The time derivative ofg can only couple to the velocity

v i5dH/dgi . Pure couplings tov i are forbidden since they
would break the Galilean invariance of the equations. Th
we are led to¹ jh i jkl ¹kv l5¹ js i j8 where we have introduce
the viscous stress tensors i j8 . The tensor of viscositiesh i jkl

possesses two permutation symmetries:~1! h i jkl 5h j ikl since
s i j8 should be symmetric@44# and ~2! h i jkl 5hkli j since it is
associated with the dissipative energy*h i jkl ¹ iv j¹kv ld

3x.
Furthermore, it has to obey the localD`h symmetry of the
nematic phase. It can therefore be written as a sum of te
that only containd i j andni :

h i jkl 5ā1ninjnknl1
a4

2
~d ikd j l 1d i l d jk!

1
ā51ā6

4
~ninkd j l 1njnkd i l 1ninld jk1njnld ik!

1r1d i j dkl1r2~d i j nknl1ninjdkl!. ~54!

The viscous stress tensor then takes the form@1#

s i j8 5ā1ninjnknlAkl1a4Ai j 1
ā51ā6

2
~niAjk1njAik!nk

1r1d i j Akk1r2~d i j nknlAkl1ninjAkk!, ~55!

where the symmetrized velocity gradientAi j 5(“ iv j
1“ jv i)/2 is also called strain rate tensor. The last two ter
only appear in compressible fluids renormalize the press
Therefore, they do not occur in the Ericksen-Leslie eq
tions. We will comment on the bars of some of the viscosit
in the following section.

D. Final equations

Collecting the reactive and dissipative terms, we arrive
the final equations. We first obtain the conservation law
the density of mass:

]r

]t
52“•g. ~56!

The equation for the director reads

]ni

]t
52v•“ni1l i jk¹kv j2

1

g
d i j

T dF

dnj
, ~57!

wherel i jk and the reactive coefficientl are given in Eqs.
~44! and~45!. Note thatdni /dt5]ni /]t1v•“ni is the ma-
terial derivative ofni . If we write
06170
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l i jk¹kv j5ld i j
T nkAjk1v3n with v5 1

2 curl v ~58!

and introduce the rate of change ofn relative to a vortex in
the fluid,

N5
dn

dt
2v3n, ~59!

we arrive at the Oseen equation well known from t
Ericksen-Leslie theory:

g1Ni1g2d i j
T Ajknk52d i j

T dF

dnj
, ~60!

whereg15g andg252lg. Note that the ratio of the two
viscositiesg2 andg1 is the reactive coeffcientl which only
depends onSand the two molecular parametersI andDI , as
first derived by Forster in Ref.@39# and later by Kamien@35#.
This coefficient determines the angle between the flow dir
tion and the director in a shear field; a phenomenon ca
flow alignment.

Finally, for the momentum balance equation we obtain

]gi

]t
52¹ j S gigj

r D2¹ i p1¹ js i j
0 1¹ j S lki j

dF

dnk
D1¹ js i j8 .

~61!

The first two terms correspond to the familiar material d
rivative rdv i /dt. Our dynamic equation for the momentu
density completely agrees with the momentum balance
Ericksen and Leslie. We have already identified the ela
stress tensors i j

0 in Eq. ~51!. The two terms in the second lin
give the complete viscous stress tensors i j

EL of Ericksen and
Leslie. To show this, we replacedF/dnk by the Oseen equa
tion ~60!, use Eq.~55! for s i j8 , and, after some manipula
tions, arrive at

s i j
EL5lki j

dF

dnk
1s i j8

5a1ninjnknlAkl1a2Ninj1a3niNj1a4Ai j 1a5njnkAik

1a6ninkAjk1r1d i j Akk1r2~d i j nknlAkl1ninjAkk!,

~62!

where the Leslie viscositiesa i are related to our viscositie
by

a15ā12gl2, ~63a!

a252g~11l!/2, ~63b!

a35g~12l!/2, ~63c!

a45a4 , ~63d!

a55~ ā51ā6!/21gl~11l!/2, ~63e!

a65~ ā51ā6!/22gl~12l!/2. ~63f!
9-8
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Notice that the two Onsager relations@1# and the Parodi re-
lation @40# in the Ericksen-Leslie theory are automatica
fulfilled in our approach:

g15g5a32a2 , ~64a!

g252lg5a21a3 , ~64b!

a21a35a62a5 . ~64c!

We can therefore conclude that the formalism based on P
son brackets completely reproduces the Ericksen-Le
equations.

V. DYNAMIC EQUATIONS FOR THE
ALIGNMENT TENSOR

Given the results of the preceding section, we are c
vinced that the formalism based on Poisson brackets is
right means to derive the dynamic equations for anisotro
fluids characterized by the alignment tensorQ. We follow
the systematic way of the formalism by collecting the re
tive and dissipative terms first and then summarize and
cuss the final equations.

A. Nondissipative velocities

The Hamiltonian has the following form:

H5E g2~x!

2r~x!
d3x1F@r~x!,Q~x!#, ~65!

where F@r(x),Q(x)#5* f (r,Q,“Q)d3x stands for the
Landau–de Gennes free energy plus a term purely depen
on r.

The nondissipative velocity for the density of mass
clear. The reactive term for the alignment tensor reads

Vi j
Q52v~x!•“Qi j ~x!1l i jkl ~x!¹ lvk~x!, ~66!

where l i jkl (x) is defined in Eq.~23!. Due to Qii 50 and
l i ikl 50, the velocity does not change the zero trace of
order parameter.

In the nondissipative velocityVi
g of the momentum bal-

ance equation, we introduce, in full analogy to the direc
approach, the pressurep5r] f /]r2 f and the generalization
of the Ericksen-Leslie elastic stress tensor

s i j
0 52

] f

]¹ jQkl
¹ iQkl , ~67!

and finally arrive at

Vi
g52¹ jFgi~x!gj~x!

r~x! G2¹ i p1¹ js i j
0

1¹ jFlkli j ~x!
dF

dQkl~x!G . ~68!
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B. Dissipative terms

The time derivative]Qi j /]t couples todF/dQi j via a
fourth-rank tensor which should not alter the properties oQ
being a symmetric tensor with zero trace. Furthermore, si
we want to describe biaxial orientational ordering in t
nematic phase, it has to obey the local symmetry of
alignment tensor given, in general, by the point groupD2h .
To simplify our considerations, we only look for tenso
which are invariant underSO(3) and, therefore, arrive at th
simplest dissipative term with the rotational viscosityg:

2
1

g F1

2 S dF

dQi j
1

dF

dQji
D2

1

3
d i j

dF

dQkk
Gª2

1

g FdF

dQG
i j

st

,

~69!

where the symbol@•••#st projects out the symmetric an
traceless part of a second-rank tensor. In the general c
Eq. ~69! would be replaced by2g i jkl

21 @dF/dQ#kl
st , where

g i jkl
21 is a tensor function ofQ that is symmetric under

i j ↔kl, i↔ j , andk↔ l and traceless under contractions
both i and j and ofk and l.

Following the time-reversal criterion, a coupling betwe
]Qi j /]t anddH/dr is also possible. However, according
the Onsager principle such a term is not allowed since
related coupling ofdH/dQi j to ]r/]t does not exist.

The dissipative term in the momentum balance equatio
¹ js i j8 5¹ jh i jkl ¹kv l , where s i j8 denotes the viscous stres
tensor. The tensor of viscositiesh i jkl possesses the same pe
mutation symmetries as in any isotropic system or in
director picture introduced before. However, now it has
reflect the localD2h symmetry that gives rise to nine inde
pendent viscosities@45#. We will not formulate this tensor in
its general form, rather we will write it as an expansion inQ
up to the second order:

h i jkl 5h1d i j dkl1h2~d ikd j l 1d i l d jk!1h3~d i j Qkl1Qi j dkl!

1h4~d ikQjl 1d jkQil 1d i l Qjk1d j l Qik!1h5Qi j Qkl ,

~70!

which results in the following stress tensor:

s i j8 5h1d i j Akk12h2Ai j 1h3~d i j QklAkl1Qi j Akk!

12h4~QikAjk1QjkAik!1h5Qi j QklAkl . ~71!

Of course, there are three further terms quadratic inQ that
we left out in Eq.~70!. The problem is that we have no clea
criterion where to break up the expansion. We included o
second-order term to be sure to reproduce all terms of
viscous stress tensor~55! in the director picture. Inserting the
uniaxial Q into Eq. ~71!, we are able to relate the prese
viscosities to the one introduced in Eq.~54! or ~55!:

ā15h5S2, a452h22 2
3 h4S, ā51ā652h4S,

r15h12 2
3 h3S2 1

9 h5S2, r25h3S2 1
3 h5S2. ~72!
9-9



t
h

la

e

e
th

in
a

io

ui
ed
tu
-

e
r
b
o

m

e

and

tly

es-
bart
the
e it

.

e

ic

een
art.
e

t
pa-
t
ces

nd

the
352/
ce

H. STARK AND T. C. LUBENSKY PHYSICAL REVIEW E67, 061709 ~2003!
It is evident that the viscous stress tensor of Eq.~71! contains
several shear viscosities which need to be worked out.

C. Final equations

In discussing our final equations, we will compare them
the set of equations derived by Olmstedt and Goldbart w
followed the path outlined by de Gennes in Ref.@1# to derive
the Ericksen-Leslie equations.

The density of mass obeys the mass-conservation
The dynamic equation for the alignment tensor reads

]Qi j

]t
52v•“Qi j 1l i jkl ¹ lvk2

1

g FdF

dQG
i j

st

. ~73!

With l i jkl (x) from Eq. ~23!, we obtain explicitly

l i jkl ¹ lvk5Qil Wl j 2Wil Ql j 1
1

3

I

DI
@A# i j

st2
2

3
Qi j Akk

12@QA# i j
st2S 11

I

DI DQi j QklAkl , ~74!

whereWi j 5(¹ iv j2¹ jv i)/2 is the antisymmetric part of th
velocity gradient. The commutator ofQ andW on the right-
hand side of Eq.~74! describes a rotation ofQ due to a fluid
vortex. With this in mind, we introduce, in the spirit of th
Ericksen-Leslie equations, the new dynamic variable for
rate of change of the alignment tensor:

Ki j 5
dQi j

dt
2~Qil Wl j 2Wil Ql j ! ~75!

and reformulate Eq.~73! as

Ki j 52
2

3
Qi j Akk1

1

3

I

DI
@A# i j

st12@QA# i j
st

2S 11
I

DI DQi j QklAkl2
1

g FdF

dQG
i j

st

. ~76!

This result is essentially the same as that obtained by Ple
et al. @33#, except that their result has additional terms qu
dratic in Qi j and linear inAi j . It is also very close to the
result of Olmsted and Goldbart who derived their equat
by a linear expansion of the dissipative flux (K) into the
generalized forces@A# i j

st and @dF/dQ#st. The first term on
the right-hand side vanishes for an incompressible fl
(Akk50) and, therefore, does not appear in the Olmst
Goldbart approach. The second term has a reactive na
with a known coefficient (I /3DI ); it appears in the Olmsted
Goldbart treatment with an arbitrary coefficientn3. The third
and fourth term do not appear in their treatment but, in th
spirit, could be regarded as reactive terms of higher orde
Q. They necessarily appear in our approach with calcula
coefficients. The last term has a dissipative nature in b
approaches.

Finally, the momentum balance equation takes the for
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]gi

]t
52¹ j S gigj

r D2¹ i p1¹ js i j
0 1¹ j S lkli j

dF

dQkl
D1¹ js i j8 ,

~77!

where the elastic (s i j
0 ) and viscous (s i j8 ) stress tensors ar

defined in Eqs.~67! and ~71!, respectively. Here, we also
have a close resemblance with the result of Olmsted
Goldbart. The first line of Eq.~77! is identical to their ex-
pression. To investigate the second line, we write explici

lkli j

dF

dQkl
52

2

3
d i j QklFdF

dQG
kl

st

12QjkFdF

dQG
ik

st

1
1

3

I

DI FdF

dQG
i j

st

2S 11
I

2DI DQi j QklFdF

dQG
kl

st

. ~78!

The first term on the right-hand side renormalizes the pr
sure and, therefore, does not exist in the Olmsted-Gold
approach. Furthermore, only the antisymmetric part of
second term appears in their paper. They had to introduc
in order to obtain the proper dissipation function

T
dS

dt
5E H s i j8 Ai j 1

1

g FdF

dQG
i j

stFdF

dQG
i j

stJ d3x, ~79!

whereg21@dF/dQ#st is the dissipative flux introduced in Eq
~69! in connection with the generalized force@dF/dQ#st.
The third tensor on the right-hand side of Eq.~78! with its
reactive coefficientI /3DI again corresponds to a dissipativ
term with the viscous coefficientn3 in the Olmsted-Goldbart
approach. The fourth tensor, of second order inQ, is new.
Finally, Olmsted and Goldbart only introduced the isotrop
part of the viscous stress tensors i j8 in Eq. ~71!, since they
were close to the nematic-isotropic phase transition.

In conclusion, we find a remarkable agreement betw
our formalism and the approach by Olmsted and Goldb
By identifying the reactive character of two of the terms, w
are able to give a concrete value for the viscous coefficenn3
in the Olmsted-Goldbart paper in terms of the molecular
rametersI andDI . Furthermore, we arrive quite naturally a
additional terms with a reactive nature whose consequen
need to be worked out.
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APPENDIX: PRESSURE AND ELASTIC STRESS TENSOR

To introduce the pressurep of Eq. ~50! and the elastic
stress tensors i j

0 of Eq. ~51! in Eq. ~49!, we rewrite the sec-
ond term on the left-hand side as
9-10
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2r¹ i

dF

dr
52¹ i~ f 1p!1~¹ ir!

]

]r
f ~A1!

and the third term as

~¹ inj !
dF

dnj
5~¹ inj !S ] f

]nj
2¹k

] f

]¹knj
D . ~A2!
er

-

tte

pl

r

06170
The sum of both terms together with

¹ i f 5
] f

]r
¹ ir1

] f

]nj
¹ inj1

] f

]¹knj
¹k~¹ inj ! ~A3!

givesp ands i j
0 .
ys.
.
v.
.
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