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Abstract
We review the novel features of the Stokes drag of a spherical particle dispersed
in a nematic solvent. It is anisotropic, couples to rotations of the particle, and
exhibits strong non-linearities.

In recent years, colloidal dispersions in nematic liquid crystals have emerged as a novel type
of soft matter (for a review see [1]). The fast development of the field started after the ground-
breaking work of Poulin et al on nematic emulsions [2], although earlier experimental [3, 4]
and theoretical [5] work revealed some of the fascinating facets of the new system. The
long-range orientational order in the nematic phase, with its possibility of elastic distortions
and the occurrence of topological defects, gives rise to interesting new features of the novel
colloidal state. A careful study of the director configurations around a single particle, with rigid
radial anchoring of the molecules at the surface and uniform alignment at infinity, revealed
two characteristic structures (see figure 1): the dipole configuration with a topological point
defect attached to the particle and the Saturn-ring configuration where a −1/2 disclination
ring encircles the particle at the equator [1]. New interactions arise (see [1] for a review)
even above the nematic–isotropic phase transition [6], and prominent structure formation is
observed, including chaining [7], gel-like ordering with viscoelastic properties [8], and even
ordered particle arrays [9]. Several advanced numerical methods are applied in the study of
nematic colloids including the simulation of multi-particle systems [10], adaptive grids [11],
and lattice Boltzmann simulations [12].

In this contribution, we address the Stokes drag—a dynamic quantity whose careful
analysis always has to be performed at the outset when the dynamics of multi-particle systems
is studied. The Stokes drag of particles in a nematic solvent has some history, summarized
in [1]. The first realistic calculations are due to Ruhwandl and Terentjev [13] who concentrated
on the Saturn-ring configuration. Their work was extended to the more interesting dipole
configuration by Stark and Ventzki [14] who also relaxed the constraint of a fixed director
field, treating its dynamics explicitly [15]. In the following, we summarize recent results and
add new insights. The novelties of the Stokes drag in a nematic solvent are threefold. First,
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Figure 1. Two possible director configurations for a spherical particle in a nematic environment
with uniform director field at infinity. The molecules are radially anchored at the surface of the
particle. The point defect in the dipole configuration can be opened up to a −1/2 disclination ring
encircling the equator of the sphere. This transition occurs when the particle radius is decreased
(keeping the radial anchoring), a magnetic or electric field is applied, or the particle is strongly
confined.

it is anisotropic, which offers the possibility of lift forces. Secondly, a coupling between
translational and rotational motion occurs which does not exist in simple isotropic fluids for
spherical particles [16]. Thirdly, the Stokes drag is highly non-linear. Before we address these
features in detail, we start with a short review of the Stokes drag in an isotropic fluid followed
by an explanation of the Ericksen–Leslie equations, which describe the dynamics of nematic
liquid crystals.

A particle of radius a moving with velocity v0 in an isotropic fluid of shear viscosity η

experiences the well-known Stokes drag force, FS = 6πηav0 [17]. To calculate this force,
one can also look at a fluid flowing around a particle at rest with a velocity v∞ at infinity and
the non-slip boundary condition (v = 0) at the particle surface. The velocity and pressure (p)
fields follow from the incompressibility condition and the momentum balance:

div v = 0, −∇p + div σvisc = 0, (1)

where σ visc
i j = 2ηAi j = η(∇iv j + ∇ jvi ) stands for the viscous stress tensor in an isotropic

fluid, and the Reynolds number is chosen small enough that the convective term, v · ∇v, can
be neglected. Integrating the total stress tensor including the pressure over the particle surface
results in the known Stokes friction coefficient γ = 6πηa.

In order to calculate the Stokes drag in a nematic solvent, we have to solve the Ericksen–
Leslie equations which are commonly used to described the dynamics of a nematic liquid
crystal [18, 19]. The formal structure of the momentum balance equation (1) is still
valid; however, the viscous stress tensor has to be replaced by a more complicated object:
σvisc → σel + σvisc, where

σ el
i j = − ∂ fn

∂∇ j nk
∇i nk (2)

σ visc
i j = α4 Ai j + α1ni n j nknl Akl + α5n j nk Aik + α6ni nk A jk + α2n j Ni + α3ni N j . (3)

An elastic contribution σel to the stress tensor appears which is due to elastic distortions
of the director field described quantitatively by the Frank free energy. In the one-constant
approximation, it reads fn = K (∇i n j )

2/2, where K is the Frank elastic constant. The viscous
stress tensor σvisc with the Leslie viscosities αi contains of course the isotropic term but, in
addition, the strain rate A also couples to the director due to the local uniaxial symmetry of a
nematic. According to these terms, several Miȩsowicz shear viscosities exist depending on the
explicit shear geometry [20]. Two further terms in the viscous stress tensor contain the rate of
change of the director relative to a fluid vortex: N = ∂n/∂ t + v · ∇n − curl v × n/2. In the
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second dynamic equation, which governs the temporal evolution of the director field n(r, t),
elastic and viscous torques are balanced: n × hel = n × hvisc, where

hel
i = ∇ j

∂ fn
∂∇ j ni

− ∂ fn
∂ni

and hvisc
i = γ1 Ni + γ2 Ai j n j . (4)

In the static case, the director field is determined by n × hel = 0. The coefficient γ1 in
hvisc denotes a true rotational viscosity of the director motion. It contributes to the viscous
torque even in the stationary case whenever ∇n �= 0. Onsager relations require a connection
to the Leslie viscosities: γ1 = α3 − α2 and γ2 = α2 + α3 = α6 − α5 [18, 19]. The origin
of n × (hel − hvisc) = 0 is controversial in the derivation of Ericksen and Leslie. Based
on microscopic Poisson brackets and the formalism developed for stochastic equations, the
Ericksen–Leslie equations became rigorously derivable quite recently [21].

Finally, the Stokes drag on the sphere is calculated by integrating the complete stress tensor
over the surface of the sphere: FS = ∫

S(−p1 + σel + σvisc) dS, where the surface element
dS is a vector directed towards the fluid. An alternative calculation of the Stokes drag via the
dissipation function is also possible [14, 15]. The viscous torque on the sphere follows from
M = ∫

S r × (−p1 + σel + σvisc) dS.
The momentum balance and the torque equation were solved numerically via the Newton–

Gauss–Seidel method. To determine the pressure, the method of artificial compressibility was
used. Depending on the symmetry of the problem, either two- or three-dimensional calculations
with different integration volumes have to be performed. The numerics of these equations is
generally quite complex and needs a careful treatment of the boundary conditions. Details are
given in [14, 15].

The solutions of the Ericksen–Leslie equations are non-trivial. However, we can categorize
them by introducing the Ericksen number Er in analogy to the Reynolds number. The Ericksen
number gives an estimate for the ratio of frictional to elastic forces in the nematic liquid crystal,
i.e., Er = α4v∞a/(2K ), where, generally, v∞ and a denote a characteristic velocity and length
scale of the system, respectively. In the limit of small Ericksen numbers, Er � 1, we can
neglect the response of the director field to the flow field and just use the static director field
for v = 0. (For a critical remark about this approximation, see [14].) We are left with the
solution of the momentum balance where it can be shown that the elastic stress tensor σel of
equation (2) renormalizes the pressure, so only the viscous stress tensor σvisc of equation (3)
has to be taken into account (see [14]).

In the case of low Ericksen numbers, the momentum balance is linear in the velocity
field and the director field does not contribute to the dynamics. This implies a linear relation
between the Stokes force and the velocity v∞. The dipole or Saturn-ring configuration or just
a uniform director field, in which a particle is immersed, exhibit an overall uniaxial symmetry
say along the z-axis. Then, in general, the Stokes force will not point along v∞; we have to
introduce the friction tensor γ:

FS = γv∞ with γ = γ⊥1 + (γ‖ − γ⊥)ẑ ⊗ ẑ, (5)

where ẑ is the unit vector along the z-axis, and γ‖, γ⊥ denote, respectively, the friction
coefficient along and perpendicular to ẑ. Such a form of the friction tensor allows drift or
lift forces acting perpendicular to v∞ [13]. For example, let a particle fall in a nematic solvent
with the overall symmetry axis inclined against the vertical direction; then the particle will
drift along the horizontal direction. We have determined γ‖ and γ⊥ for the three configurations
mentioned above and the two nematic compounds MBBA and 5CB. We find that the ratio
γ⊥/γ‖ lies between 1.5 and 2.0 which should be measurable in an experiment. Furthermore,
we observe that the dipole and Saturn-ring configurations possess similar ratios whereas for a
uniform director field the ratio is larger by 20% [14].
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Figure 2. The streamline pattern for the dipole configuration oriented perpendicular to v∞. The
point defect is indicated by the dot below the sphere. A non-zero viscous torque M ∝ p × v∞
induces an anticlockwise rotation of the particle.

(This figure is in colour only in the electronic version)

In the following we discuss further special features of the Stokes drag. In figure 2 we
plot the streamline pattern of the velocity field for v∞ perpendicular to the dipolar axis. The
point defect in the director field is indicated by a dot. The missing mirror plane of the dipole
configuration is clearly recognizable, and the point defect gives rise to a dip in one of the
streamlines. Although the pattern resembles that of the Magnus effect [22], symmetry dictates
that the Stokes drag F⊥

S ‖ v∞ (see equation (5)). A lift force perpendicular to v∞ cannot
exist so far. However, in our numerical calculations, we find a non-zero viscous torque M
acting on the particle whose direction for a fluid flow from left to right is indicated in figure 2.
Symmetry allows such a torque M since the cross-product of a dipole moment p, which can be
assigned to the dipolar configuration (see [2, 23]),and v∞ gives an axial vector or pseudovector,
M ∝ p × v∞. In the Saturn-ring configuration a non-zero dipole moment cannot exist by
symmetry, and therefore a non-zero torque does not occur. We had to correct the direction
of the torque in figure 2 from that in our earlier publication [14]. Now the direction of M
seems to be counterintuitive, since according to the streamline pattern more surface of the
sphere is exposed to shear stresses acting from left to right. On the other hand, the director
field around the defect produces a high resistance for the flow field via the complex viscous
stress tensor, which is then transferred to the particle surface and might therefore explain the
direction of M . The torque M induces a rotation of the particle which we took into account
in our numerical calculations by changing the boundary condition of the velocity field at the
particle’s surface. We ultimately find an angular velocity Ω where the torque M vanishes.
Now, in principle, a Magnus force proportional to v∞ ×Ω is also allowed acting perpendicular
to v∞ and Ω. However, such a force is beyond our theory linearized in V . To illustrate
that our observations are not at all trivial, let us compare them to the Stokes drag in isotropic
fluids. Detailed investigations of Brenner [16] show that spherical particles or, more generally,
particles which are non-chiral in the sense that they coincide with their mirror picture just fall
under the influence of gravity without rotating. From what we learnt above about a nematic
solvent, we deduce that a spherical particle will start to spin about a horizontal axis when it is
surrounded by the dipolar director configuration which is also oriented along the horizontal.
Such an effect should clearly be observable in experiments.
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Figure 3. For the dipole configuration, the distance rd (between the point defect and the centre
of the sphere) and the effective viscosity η

‖
eff of the Stokes drag are plotted as a function of the

Ericksen number Er; Er < 0 and Er > 0 mean flow from above or below, respectively.

We have solved the complete Ericksen–Leslie equations in the case of the dipolar
configuration for arbitrary Ericksen numbers when v∞ is directed along the dipole axis. This
constitutes an effective two-dimensional problem. In figure 3 our results for the Stokes drag
are illustrated. As abscissa coordinate we use the Ericksen number Er ∝ v∞, where Er > 0
means flow from below, and Er < 0 means flow from above, as indicated by the inset in
figure 3. The upper curve gives the distance rd of the hyperbolic point defect from the centre
of the sphere in units of the particle radius a. When the fluid flows from above (Er < 0),
the defect is slightly pulled towards the sphere, and the distance rd/a changes from 1.26 at
Er = 0 to 1.13 at Er = −30. In the lower curve, we plot the Stokes drag F‖

S in terms of
the effective viscosity η

‖
eff = F‖

S /(6πav∞). Corresponding to rd , it also slightly decreases
from 0.48 P at Er = 0 to 0.42 P at Er = −30. We understand this behaviour from an
investigation of the director field (for figures, see [15]). Compared to the dipolar configuration
in figure 1, the director field is straightened up along the vertical axis when the defect moves
towards the particle. It is therefore more uniform, which reduces the resistance to flow. On
the other hand, for Er > 0, the defect moves strongly away from the sphere which leads to a
correspondingly strong increase of η

‖
eff . Thus we can conclude that the Stokes drag in a nematic

environment is not only anisotropic, but also behaves highly non-linearly. Furthermore, its
magnitude crucially depends on whether the fluid first flows against the sphere (Er < 0) or
against the point defect (Er > 0). Such a behaviour is only possible through the coupling
between the velocity and the director field. It is due to the fact that the torque balance equation
n × (hel − hvisc) = 0 (see also equation (4)) is not invariant under v → −v. In a static dipole
configuration (Er → 0), it therefore cannot occur. We also stress that the defect is not a solid
object. Thus, the intuitive argument that the defect should be pushed against the particle for
Er > 0 is not applicable here. The motion of the defect is solely determined by the non-trivial
solution of the torque equation. A simple explanation for its behaviour is not obvious.

How realistic are high Ericksen numbers in a falling ball experiment? Balancing the
gravitational, the buoyancy, and Stokes’s friction force, we arrive at settling velocities for
latex particles which give Ericksen numbers much smaller than one due to the small density
mismatch. The mass density of gold particles, however, is larger by a factor of 20 than that of
liquid crystals. Particles of radius 10 µm, ηeff = 0.5 P, and K = 10−6 dyn then give Er = 5.
The settling velocity scales with a2, so a variation of the Ericksen number is possible.

We conclude with a final remark. The point defect will not become detached from the
droplet at a finite Er > 0, as figure 3 might suggest, since this costs too much elastic energy.
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A more realistic scenario is that the defect becomes unstable for a large Er > 0, opens up to
form a Saturn ring (as predicted for high magnetic or electric fields [1]), and possibly moves
to a position above the particle that would correspond to Er < 0 in figure 3. However, due
to a ‘numerical pinning’ of the defect ring, we are not able to verify this effect in a director
theory [1]. We are currently working on an approach using the alignment tensor [11] to clarify
this question.
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