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Hydrodynamic coupling of two rotating spheres trapped in harmonic potentials
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We theoretically study in detail the hydrodynamic coupling of two equal-sized colloidal spheres at low
Reynolds numbers assuming the particles to be harmonically trapped with respect to both their positions and
orientations. By taking into account the rotational motion, we obtain a rich spectrum of collective eigenmodes
whose properties we determine on the basis of pure symmetry arguments. Extending recent investigations on
translational correlationgl].-C. Meiners and S. R. Quake, Phys. Rev. L&#.2211(1999], we derive the
complete set of autocorrelation and cross-correlation functions emphasizing the coupling of rotation to trans-
lation which we illustrate in a few examples. An important feature of our system is the self-coupling of
translation and rotation of one particle mediated by the neighboring particle that is clearly visible in the
appropriate autocorrelation function. This coupling is a higher-order effect and therefore not included in the
widely used Rotne-Prager approximation for the hydrodynamic mobilities.
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[. INTRODUCTION accurately[16,17]. Many experiments based on this tech-
nigue have been carried out to study soft medi@—21.

Colloids are widely used to model atomic systeg?]. Furthermore, this method was used to measure the correc-
However, there is one feature specific to colloidal suspentions to the diffusion coefficients in a system of two spheres
sions which distinguishes them fundamentally from atomicdue to hydrodynamic interactiori22] and to study the hy-
systems: the so-called hydrodynamic interactip8sf]. A drodynamic coupling of two spheres to a wB].
particle moving in a viscous fluid creates a long-range flow The physical systems we have in mind are colloidal sus-
field around itself through which it interacts with other par- pensions of birefringent spherical particles. For example,
ticles. Thus, hydrodynamic interactions constitute a complithey are realized by polymerizing the nematic order in
cated many-body problem since the motion of one particldiquid-crystal droplets[24,25. In contrast to conventional
depends on the translations and rotations of all the othdsotropic colloids, both their positions and orientations can
particles in the fluid5]. be manipulated by optical tweezers. In particular, the orien-

The central quantities in the description of hydrodynamictation is controlled with optical traps generated by linearly
interactions are the mobility or friction tensors which con- polarized laser light and is detected, e.g., with crossed polar-
nect in a linear response scheme all the forces and torquézers[24—-24 (see Fig. L
acting on the particles to their linear and angular velocities In the present paper, we consider a system of two trapped
[6]. In the present paper, we draw special attention to thépheres of equal size. We give a complete analytic descrip-
rotational degree of freedom and how it couples to translation of the coupled translational and rotational dynamics.
tion. Its physical consequences have rarely been treated fAue to the axial symmetry, the longitudinal motions parallel
literature[7-9]. to the particle-particle axis decouple completely from trans-

In many physically interesting systems, hydrodynamic in-versal motions. In addition, there is no coupling of transla-
teractions play an important role. Whenever dynamic effectéion and rotation in longitudinal motions. This greatly re-
in suspensions are studied, hydrodynamic interactions hawduces the complexity of the problem. We determine the
to be taken into account. Examples are sedimenting particles
[10,11] or the apparent attractive interaction between like- T.aser Baai
charged spherical particles mediated by a single, like-
charged wall12].

In recent years, a new method called microrheology has
been developefl13] and applied to several biological sys-
tems[14,15. It is used to determine rheological properties of
viscous and viscoelastic media by tracking the trajectory of
embedded probe particles and calculating the time-depender
position correlations. The so-called two-point microrheology
employs a system of tWC,) colloidal p,art'des' Wh'Ch, has s_ev- FIG. 1. Sketch of a setup to monitor rotational correlations of
eral advantages over using only a single particle; in particUgyg pirefringent particles. The particles are situated onztfaeis.
lar, the correlated motions of two tracer particles reflect therne jaser beam of the orientational optical trap is directed along the
bulk rheology of the medium they are embedded in morg; axis and its polarization points intodirection. To monitor trans-

versal correlations, the direction of observation is alongytlagis.
Pure longitudinal rotational correlations are only observable along
*Electronic address: michael.reichert@uni-konstanz.de the z axis.
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complete set of collective eigenmodes of the system and calith the 6N X 6N mobility matrix

culate the correlations for particles undergoing thermal fluc- " "

tuations. Our work extends recent investigations on correla- Lpnj] L)

tions in translational fluctuationgl8—20. By taking into [t r
. . . ”’u] [/‘1]]

account the rotational degrees of freedom, we obtain a rich

spectrum of collective modes and correlation functions.  where the four blocks ofl consist each oN XN matrices

The outline of this paper is as follows. In Sec. “, we first whose elements are thex3 mob|||ty tensors; e.g.,
summarize the basic equations for the description of hydro-

: 4

dynamic interactions in general. Then, we study in detail the woo mly

two-particle system and show by symmetry arguments how it it . . .

decouples into the aforementioned longitudinal and transver- Lejl=] E ol ®)
sal motions. Assuming that both the particles’ positions and /uﬁ,l e /LE,N

orientations are trapped in harmonic potentials, we determine

and discuss their collective eigenmodes in Sec. IlI. Finally, irAccording to the reciprocal theorem of Lorentz, the mobility
Sec. IV, we use Langevin dynamics to calculate correlatiod€nsors fuffill the symmetry relatior{$]

functions for the thermally fluctuating positions and orienta- CT T ATt

tions of the trapped particles and point out their interesting (i) =min (i) =m0 () = mis ®)

features.
where ()" denotes the transpose gf;, etc. Thus, the

entire GNX 6N matrix M is symmetric.
In the overdamped limit discussed here, the work done on
A. Fundamental equations the particles by the external forces and torges com-

In the regime of low Revnolds numbers and on thepIeter dissipated in the fluid, so the energy dissipation rate
ol W EEYNOKS AUMPErs S (v, Fi+®-T)=V-F=V-M~1V has to be positive.

Brownian time scale, the flow of an incompressible fluid heref he fricti M- and h h bili
with viscosity 7 obeys the Stokes or creeping flow equations' "erefore, the friction matrbM “~ and hence the mobility

II. HYDRODYNAMIC INTERACTIONS

[3] matrix M itself are positive definite.
There are several methods to calculate the mobility ten-
7V2u—Vp=0, V.u=0, (1) sors for a given many-particle system, e.g., the concept of

reflected flow fields using the gradient expansion technique
whereu is the flow field andp the hydrodynamic pressure. [3,6] or the method of induced force multipolg5,27]. The
Stokesian dynamics describes overdamped motion in a vigatter was implemented in the numerical libra#yDROLIB
cous fluid. In the following, we consider motions of particles [28] which calculates the mobility or friction matrix for a
in an unbounded and otherwise quiescent fluid, ue=0 at  given configuration of spheres.

infinity.

Imposing stick boundary conditions on the surfaces of all B. Two-sphere system
N particles suspended in the fluid at positioms (i ) i )
=1,...N), the motions of the particles are mutually In the following, we consider a system of two equal-sized

coupled via the flow field. Due to the linearity of Eq4), spheres. Le@ bg the vector connecting the centers of the two
the translational and rotational velocities of the partictes, SPNeres, pointing from sphere 1 to sphere 2, it center-

and w;, depend linearly on all external forces and torquesto-center distance. Then=r/r is the unit vector along the
acting on the particles;; andT; [6]: line of centers. Due to the rotational symmetry about the axis

r and the different parities of polaw( andF;) and pseudo-

N
vectors ; andT;), the mobility tensors can be written as
vi:jg1 (i Fj+ i T, (29 [29] © ) y
N i (N =pil(Orer+uf (N (1-rern), (7a)
@ =2, (WFi+pT). (2b) o o
" w0 =pilnrer+ult(r)(1-rer), (7b)

The central quantities constituting the mutual coupling of R

translation and rotatiofdenoted by superscriptsandr) of i ()= i (r)rx. (70

two particlesi andj are the 3<3 mobility tensorsu; , s , 3 o Ao il o

pil, andp . They depend on the current spatial configura-The mobility coefficientsu; , wj -, andu;;- (i,j=1.2)

tion of all particles, i.e., the set of position vectors e scalar functions (_jependl_ng only on the center-to—_center
{ry, ...y} in the case of spherical particles. distancer. They describe motions parallel and perpendicular

To introduce a more compact notation, we define thd® the axis, respectively. Using the general symmetry rela-
tions (6) and the fact that particles 1 and 2 are identical, the

6N-dimensional vectory¥=[v,, ... vyN,®q, ... ,0y] and >\ o
F=[Fy,....Fn.T1, ... Ty]. Then, Eqs(2) take the form ~ Mobility coefficients obey29]
V=MF 3) pirt=ult, plt=plt, pii=—ub, (83
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oo r - Vig Vo C. Mobilities in Rotne-Prager approximation
O%Klz erz e " Q For a system of. two particles, the mobiIi}y tensors can be
"""""" calculated, e.g., with the method of reflections based on the
Wy, W, = Nt Faxen theorem. It provides a systematic expansion of the
@1y @2y mobility tensors in powers of the inverse particle separation
@) XL (b) (for a detailed description, see, e.g., R&f).
- The leading order in the far-field approximation of the

o _ _ _ mobilities is the well-known Oseen tensor which considers
FIG. 2. Definition of the applied Cartesian coordinate systemthe particles as pointlike and hence does not include rota-
Thez direction is along the center-to-center line of the two spherestions. The next-higher order is the so-called Rotne-Prager
Longitudinal motions(a) decouple from transversal motiorib). gpproximation. It corresponds to one reflection of the flow
Furthermore, there is no coupling of translation and rotation forfield and is therefore exact up to the order o;f)31/Where
longitudinal motions. p=rl/ais the dimensionless particle distaneei¢ the radius
of the spheres The relevant mobilities including the rota-
L _ ], L L rrfl L trl_ o trl sb . .
Mg =M1 s M1t TM21 s M2 H21 - (8D tional degrees of freedom are presented, e.g., in Refs.
With the explicit expressiong7), the dynamics of the [30,29. They also follow straightforwardly by extending the
two-sphere system described by E8). separates into longi- calculations in Ref[3], where the torques are explicitly set
tudinal motions parallel and transversal motions perpendicuto zero.

lar to the particle-particle axis. Furthermore, longitudinal In the Rotne-Prager approximation, the self-mobilities are
translations and longitudinal rotatiorfse., rotations about identical to the Stokes coefficients for single spheres,

the axig do not couple to each other because of the different
parities of translationgpolar vectory and rotations(axial
vectorg. In a Cartesian coordinate system with théirec-
tion pointing alongr (see Fig. 2 we obtain from Eqs(2), mi=u'l, where u'=(8wpad)?, (13
(7), and(8b) for longitudinal motions

mi=up'l, where u'=(6mwna)?, (12

] ] and there is no self-coupling of translation and rotation, i.e.,

U1, M1l M1 O 0 Fi,

Vaz | Mtltl Mtltul 0 0 Fa, [L-UZMFFZO. (14)

on| | 0 o Wil wpl||T.l © o

w3y, 0 0 il ui]l T Note that for an isolated sphere within the linear Stokes re-

_ _ _ gime, translation and rotation are not coupled; the so-called
wherev ,, is thez component of the translational velocity of Magnus effect only enters via the nonlinear term in the
particle 1, etc. In transversal motions, translations alongthe Navier-Stokes equatiofg81]. On the other hand, in the two-

direction are coupled to rotations about thexis: sphere system, the self-coupling exists since it is mediated
w W o L by the second particle. However, this is an effect of higher
U1x M1 M1z T M1 T M2 Fix order than 14° and therefore not included in the Rotne-
Doy o pt s it Fy, Prager approximation, as state(_j in Ety4). _ N
= . For completeness, we also give the essential cross mobili-
_ L trl L L T . .
W1y M11 M2 M1 M12 1y ties:
w2 _o L trl L L T
y M1 M1 M1 M11 2y
(10 3 1
tt _ ot o for
) o _ M= —(1+rer) + —(1-3rer) |, (15
Translations along thg direction and rotations about the 2 4p 2p°
axis obey an equivalent system of equations.
Defining a four-dimensional velocity vecterand a force L
vectorf, we abbreviate Eqg9) and (10), respectively, b A
9489) and(10). respectively, by pilp= |~ 5 (1-ren)|, (16)
v=mf, (12) g
where the appropriate>44 mobility matrix m is still sym- " 1.
metric. Thus, rotational symmetry reduces the fullx12 M= plla—rx . (17
problem(3) to two 4X 4 problems, where Eq9) is essen- p
tially a 2X 2 problem.
. . . . _1 .
Accordlngly, the energy.dlssmatlon rate- M~V splits Ill. EIGENMODES OF TWO TRAPPED SPHERES
up into a sum of three independent terms of the form
v-m~ 1y, so the single-mobility matricem have to be posi- We aim to study thermal motions of particles that are
tive definite. trapped with respect to both their positions and orientations.
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polarization Ax the equipartition theorem yieldg?, ) =kgT/k'<1, which is
ol tie.wag K consistent with the initial assumption.

S S free rotational We d_efin_e generalized coordinates[r1,,r»,, X121 X22]
- S~ diffusion for longitudinal modes anq=[rlX T ax s X1y 1X2y]_ for trans-
) versal modes, and combine the corresponding trap forces
(18) and torqueg19) into a four-dimensional vector

f=—kq (22)
optical axis

of the particle\/’\

with the diagonal force constant matrix

Kk 0 0 O
- 0 K 0 0
Xiz ’ “lo o k ol (23
Xiy 0O 0 0 k'

y

FIG. 3. While the rotation of the optical axis of the trapped Then, the equation of motiofi1) for both longitudinal and
particle about the direction of the trap polarizatigrere pointing ~transversal modes reads
along thex axi9) is free, the deviation from th& direction is re- .
stricted, and therefore the angular displacemenjsand y;, are g+ mkqg=0, (24)
small (see text
wherem is the appropriate mobility matrix given by Eq9)
Assuming that the spatial and angular displacements arend (10), respectively. Note that for spatial displacements
small, we consider harmonic trap forces and torques, i.e., small compared to the equilibrium particle distance, we can
considerm to be constant.

Fio=—KTia, (18) The solutions of Eq(24) are relaxational eigenmodes
; e Mla, with relaxation rates\,, or relaxation times\,*.
Tia=—KXia (19) They are determined by the eigenvalue problem

where k! and k" are positive force and torque constants (

mka,=\ n=1,..., 25

=1,2 is the particle number and=x,y,z the coordinate n= oo ( 3 @3

index. The particle velocities are of the nonsymmetric & 4 matrixmk whose eigenvectora,
. are in general not perpendicular to each other. In the next

Via=lia: (20 two sections, we will analyze the eigenmodes in detail.

where the spatial coordinate, denotes the displacement of
particlei along directiona.

The angley;, describes the rotation of partidl@bout the To study the longitudinal eigenmodes, the traps have to be
coordinate axisy. As long as this angular displacement is polarized along thex or y direction so that the angular dis-
small (x2,)<1), we can relate it to the angular velocity via placementsy;, are small. Since longitudinal translations and

rotations are decouple@@s discussed in Sec. I)Bwe can
Oia= Xia- (21)  immediately write down the eigenvalues and eigenvectors of

o . _ ~ the four eigenmodes:
This is a nontrivial statement and requires some explanation.

A. Longitudinal eigenmodes

The optical axis of the trapped birefringent particle aligns N1jp= kt(,uﬂi ,uﬂ . &=[1,%1,0,0], (263
along the polarization of the laser trap pointing along, e.g.,
the x axis (see Fig. 3 Any deviation of the particle orienta- M=K (ul=u),  a,=[001x1]. (26b

tion from thex direction is described by the anglgs, and

Xiz,» and relaxes in the optical trap on the time scaleThey consist of relative{) and collective ¢-) modes. In-
(k'u") 1. However, the free rotational diffusion of the par- tuitive arguments allow a comparison of the respective relax-
ticle axis about the direction also changes the angular dis- ation rates. For example, when the spheres translate in oppo-
placementsy;, and x;, (see Fig. 3 and therefore, relation site directions(relative translational mode,), some fluid

(21) does not hold in general. Nevertheless, in the limit con-has to be pulled into or squeezed out of the region between
sidered here the orientational relaxation is a much faster praghe two particles; or when they rotate in opposite directions
cess than the free diffusion, so on the relaxation time scal@elative rotational modey), the fluid between the spheres
(kK'u" "1, the free diffusion can be neglected and relationhas to be sheared. On the other hand, when the spheres trans-
(21) is applicable. To show this, we note that the free rotadate or rotate collectivelmodesa; or a3), the fluid sur-
tional diffusion takes place on the time scalesTu") 1. rounding the spheres is just “displaced” or “rotated” as a
Requiring that k'u") Y/ (kgTu") "1=kgT/k'<1 and using whole. So the collective modes experience less resistance
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and therefore relax faster than the relative modes. This is ir —*

accordance with Eq$26) which givex;>\, and\3>\,. ° o

B. Transversal eigenmodes
g () ()

modes ar&=[r1,,l 5, X1y, X2y], @nd the mobility matrixm

is given by Eq.(10). The polarization of the traps has to be

chosen along the or z direction so that the angleg, are S &
small.

The diagonalization of the nonsymmetrixx4 matrix mk
is not immediately obvious. However, symmetry arguments =
help to identify the eigenvectors. Since the two particles are
identical and since spatial coordinates and angles possess FIG. 4. Transversal eigenmodes of two trapped sphevede:
different parities, one readily shows that the eigenvectoréelaxed equilibrium staje There are two modes with collective
have to be of the formiA,A,B, —B] or [A,—A,B,B]. This translat!on and relatlv_e rotath(a) and two modes with relative
constraint simplifies the determination of the eigenmoded'@nstation and collective rotatici). For each mode shown, there
considerably. There are two relaxational modes with symls a complementary mode with opposite direction of rotation.
metric translation and antisymmetric rotation,

The appropriate coordinates to treat the transversal eigen

casev = — M&%sz (for the geometry, see Fig,),2we infer

—irpt,, L t, L mLy2 i trly2 X <. X
o= 3Kt + K (K — K ™) 24 4Kk ()2, that w5 is positive. Thusu™ >0 andu"™ <0, and we find
(278 A.,>0 andAg,<0.

_ We note that all eigenvalues ofk are positive. To prove
a2=[Av2,A1z2, B2, Bapal, (27D this statement, we requive,>0 in Egs.(27a and (289 and
find the condition u™ ™ >(u™)?, which is the same
guaranteeing that the mobility matrix is positive definite.
A= — 2K ™ 27 The eigenmodes described by E@a7b) and (28b) are
2 = 270 ustrated in Fig. 4. The mode in Fig(# corresponds to the

where

By — (Kt —kr eigenve.ctoral, and the one in Fig. ) to as. Each of .the _
12 M+ L modes is complemented by a mode with opposite direction
T T T of rotation corresponding to the eigenvectassanda,, re-
=K —K ™) 2+ Ak (u™)?, (279 spectively. Figure 4 shows the faster modes, A3\, and
N3>\N,. The reason for this is simply that the relaxations
described bya; andag show qualitatively the same behavior
as if the particles were not trapped with respect to their ori-
entations k'=0). Hence,a, and a, correspond to modes
where the orientational relaxation is opposite to this “natu-
ral” direction of rotation. Therefore, these modes are slower
compared to their respective partnejsand as.
8g/4=[Asiar ~ AsiarBaja, Baial, (28b These qualitative considerations are in agreement with ex-
act numbers for the eigenvalues which we plot in Fig. 5 as a
where function of the particle distance. Furthermore, for large dis-
_ - tances, rotational and transversal motions decouple ipge
Ag=—2K'p, (289 tend towards the single-particle translational relaxation rate
k'u! whereas\ ,,, assume the corresponding rotational value
Bau= — (Ku —k'uf) k'u'. As obvious from the figure, this decoupling occurs for
T TR T o T the rotational motion at shorter distances compared to trans-
VKR =K )2+ 4Kk (w2 (28d) lations since rotational flow fields decay faster than transla-
tional ones.

and two modes with antisymmetric translation and symmet
ric rotation,

Ngia= 3K K = V(KD =k )2+ 4k‘kfw‘ii Zg
28

Here, we use the abbreviatiopd" = ! + !5 , etc.

Without relying on the exact values of all the mobilities,
we can already infer the qualitative characteristics of the | T\ME CORRELATIONS IN BROWNIAN MOTION
eigenmodes based on general arguments. The signs of the
componentsB;_, are independent of the mobility coeffi- To treat the Brownian motion of the two spheres, time-
cients. It isB;>0, B,<0, B3>0, andB,<0. The signs of dependent random forces and torqfé® mimicking the
A,_, depend on the signs @™ . In Sec. Il C, we already microscopic degrees of freedom of the surrounding fluid

discussed on the basis of the reflection method that the aftrave to be added. The total generalized force vector is then

solute value of the cross mobilitw; is larger than the f=—kq+7(t). Extending Eq(24), we obtain the Langevin-

self-mobility Y1 . Furthermore, by considering the special type equation

031407-5



M. REICHERT AND H. STARK

dimensionless center-to-center distance p
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FIG. 5. Eigenvalues of the transversal mogEsis. (278 and FIG. 6. Correlation functions for longitudinal rotational mo-
(283] as a function of the dimensionless center-to-center distanc@ons, The curve labels indicate the dimensionless center-to-center
p=r/a. The mobilities were calculated using the numerical library gistancep=r/a. The functions are normalized to the mean square
HYDROLIB [28]. The trap constants are chosenkask'. angular displacemexif2)=kgT/k". The mobilities were calculated

using the numerical libraryrybroLIB [28].

g+ mkq=mf(t), (29)
kgT
which describes a so-called Ornstein-Uhlenbeck process (gm(t+7)gn(t))= kB 2 e Maby, (33
[32]. The random force is assumed to be a Gaussian white nn |

noise and is fully characterized by its first and second

moments, wherea,,,, (b;,) is themth (nth) component of the vecta
(b)) andk,, the nth element of the diagonal matrix (k,,
f)=0, {Jt)eTf(t))=2kgTm 1s8t—t’). 30  =k\k' k' k). Normalizing the correlation function to the

square roots of the mean square displacemed)
The fluctuation-dissipation theore(80) relates the second =kgT/k,,, we finally arrive at
moment of the fluctuating forces and torques to the friction
matrix m~* [33].
The formal solution of the Ornstein-Uhlenbeck process
described by Eq(29) reads[32]

(Am(t+7)qn(1)) Kmm N
@ Vg & ambn (9

t L
q(t)zefmktq(0)+f dt’e”™EOmft’), (31 A. Longitudinal motions
0

Longitudinal motions are characterized by the eigenvec-
where the matrix exponential is defined, as usual, by its Taytors and eigenvalues in E6). Translations and rotations
lor expansione™™!=3%_ (—mkt)%s! Since we are only are decoupled. So the respective autocorrelation} &nd
interested in the fluctuating part gft), we omit the deter- ~cross-correlation {) for rotational motions are given by
ministic relaxatione~ ™ q(0) due to an initial displacement [exp(—Ku'7) =exp(ku"l7)1/2, where uT= i+ 1),
by choosingg(0)=0. In calculating the correlation matrix, For translations, the correlation functions are the same, how-
we employ the second part of E¢B0) and consider the ever the relaxation rates are replacedkhy®l [18-20.
long-time limit (t>)\;1), where the system has relaxed to  The correlations for translational motions have already
thermal equilibrium. We finally obtain been measured experimentally and compared with theoreti-
cal predictiong18—20. These works reveal a good agree-
ment between theory and experiment. The correlation func-
tions for rotational motions show the same qualitative
behavior (Fig. 6), however with some quantitative differ-
ences.

First of all, we realize that the strength of the cross cor-
relations decreases with increasing particle separation. This

(q(t+ 1) ®q(t))=kgTe ™k~ 7=0. (32
Note that the correlation matrix is symmetric, i.€qg(t,)
®q(t2))=(a(tz) ®q(t1)).

To express the correlation functions explicitly in coordi-
nates, we introduce the dual eigenvectbrsvia (mk) b,
=\,b,. Together with the eigenvectoes,, they fulfill the is explained by the decrease of the cross mobim%‘,
orthonormality and completeness relatioag: b,= d,, and  which is due to the spatial decay of the flow fields created by
Z.,a,9b,=1. Representing the matrix exponential by its the particle rotation. Compared to translational motions, this
spectral decompositiorg"™!'=3 e *'a,®b,, we obtain decrease is more pronounced since rotational flow fields de-
from Eq. (32 cay stronger than their translational counterparts.

031407-6



HYDRODYNAMIC COUPLING OF TWO ROTATING . .. PHYSICAL REVIEW BE59, 031407 (2004

Second, while the autocorrelation reveals the typical=
monotonous decay, the cross-correlation function features a™ 000
interesting behavior. It is negatiéenoted as “anticorrela-
tion” in Ref. [18]), since the relative modes decay more
slowly than the collective ones, as already mentioned in Sec
[l A. Therefore, the negative term in the cross-correlation =%
function in the first paragraph dominates.

The most interesting feature of the cross-correlation func-
tion is that it exhibits a “memory effect.” It vanishes at
=0, in contrast to what one would initially expect for the
instantaneous hydrodynamic forces in Stokesian dynamics g ,
and then shows a distinct time-delayed extrenilonated at 004 p o 10 20 20 0
7 in Fig. 6). This behavior can be understood as follows. (a) time difference T [arb. units]

The motion of particle 1 creates a fluid flow which instanta-

neously reaches particle 2. However, due to the trap, particle T

2 can only “react” in a finite time. Thus, the correlation :
evolves on a characteristic time scale which is related to the§ 0.008
relaxation times and thereby to the trap stiffness. Since the.~
“memory” is “stored” in the trap, it cannot last longer than
the typical relaxation time. Hence, the correlation decays to

-0.01

-0.02 |

mixed cross-correlation
angle 1 x position 2

-0.03

rm. cross-correl. ¢ X1y +7v)r

mixed self-correlation
angle 1 X position 1
0.006

T+

zero for times larger tham*. x 0004 |
For sufficiently large particle distances, the self-mobility §
,uﬂ is much bigger than the cross mobiliﬁyﬂ. Then, to ?g
leading order, the characteristic time scale is given by theg %%
single-particle rotational relaxation time* =(k'w") "%, in é
analogy to the translational caEe8—-20. Indeed, according g 0000 —

to Fig. 6, 7° depends only very weakly on the particle dis o o o o 200 750 00

tance. Nevertheless, the cross mobil';tﬂ is sufficiently ) time difference 7 [arb. units]
large to separate the two time scalek' l”)*l and
(kr,uf_rH)*l, which is the origin of the anticorrelation. FIG. 7. Correlation functions for transversal motions. The

curves shown are the mixed cross-correlation and self-correlation
for angle and position. The curve labels indicate the dimensionless
center-to-center distange=r/a. The trap constants are chosen as

The transversal eigenmodes are characterized by(Ef)s.  k'=Kk". The functions are normalized to the square roots of the mean
and(28). Since the two types of eigenvectors are orthogonakquare disp|acement@(i2y>=kBT/kr and (r2)=kgT/k! [see Eq.
to each other, i.eqy,- a34,=0, the dual vectorg,, are lin-  (34)].
ear combinations of; anda, only; the equivalent holds for
bs4. One finds self-coupling and cross coupling of rotation and translation,

respectively.

lan|?a,— (ay- ay)ay, Both correlation functions show a distinct time-delayed
- la2la|?— (a,-a) (35 extremum, denoted byt and 7 in Fig. 7. The mixed cross

correlation is interpreted in the same fashion as the longitu-
dinal cross correlation in the preceding section.
where the index combinations armlﬁ)=(1|2), (2]1), The most striking feature is revealed by the mixed self-
(3]4), (43). The correlation functions for the coordinates correlation. For a single sp.here, translation.and rot.ation are
01=T1x, U2=Tl2x, U3= X1y, @andd,= x2, are obtained from not coupled 31], i.e., the mixed(self-)correlation vanishes.
Eq. (34). Now, they are linear combinations of four exponen-However, in the two-sphere system, there exists a mixed self-
tial decays. correlation, as shown in Fig. 7, that is mediated by the neigh-

The autocorrelation functions(r ;,(t+ 7)r1,(t)) and boring particl_e. This correlation_ is weaker than th_e mixed
(x1y(t+7) x1,(t)) show qualitatively the same monotonous Cross correlation smce.the flow ﬂel_d created by particle 1 has
decay as in the case of longitudinal fluctuati¢sse Fig. 6. to be reflected by particle 2. As discussed before, particle 2
Al the other correlation functions exhibit the features of thereéacts with a finite delay due to the trap stiffness. Then, in
longitudinal cross correlation discussed in Sec. IVefcept ~ addition, particle 1 also has a finite “reaction time.” Hence,
for the sign. we always expect? > 77 .

As representative examples, the correlation functions for We also studied the influence of the trap stiffnedsemnd
rotations about thg axis and translations along tixedirec- k' on the correlation functions. As illustrated in Fig. 8, the
tion, (x1y(t+ 7)1 14(t)) and{x1y(t+ 7)r (t)), are plotted in  difference in the delay times; and 7 decreases with in-
Fig. 7. In the following, we will refer to them briefly as creasing ratick/k". Furthermore, we observe that the corre-
mixed self-correlation and cross correlation, describing thdations are strongest fd¢~k'".

B. Transversal motions

n
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different particle separations have been calculated based on
mobilities which we obtained from the numerical librafy-
DROLIB [28].

The longitudinal fluctuations exhibit the features already
mentioned in Refd.18—-2(, namely, a memory effect in the
cross correlations. The transverals fluctuations are governed
by the coupling of translations and rotations. As the most
striking feature, this coupling is also visible in the self-
correlations which are governed by a second delay time in
addition to the one observed in the cross correlations. The
self-coupling of translation and rotation for one sphere has to
. - _ 0.00 be mediated by a second sphere. It is not included in the
0.1 1 10 100 1000 Rotne-Prager approximation and therefore introduces an ad-

time difference 7 [arb. units] ditional effect of higher order.
Correlation functions involving the rotational degrees of
FIG. 8. Mixed self-correlatior(label s) and cross correlation freedom are weaker compared to pure translational correla-
(labelc) for various trap constant ratidS.k". The force constark'  {ions since the flow field of a single rotating sphere decays as
was varied k'=0.01, 1, and 100), while the torque constant was 2 compared to translating particles where the decay is

kept fixed &'=1). The qualitative behavior of the functiofdis- 1/ "to\vever, the strength of the correlations increases for
cussion see textis the same for different particle distancdere decreasing particle separation which is more pronounced
p=4). whenever rotations are involved. Furthermore, at sufficiently
gmall distances, lubrication theory becomes impor{&si,

Note that the mixed self-correlations cannot be treate ! L .
within the Rotne-Prager approximation. They constitute anand the system introduced in this paper may help to check its

" . . : predictions.
additional effect of higher order, as mentioned in Sec. Il C. Our work stresses the rotational degree of freedom and its

influence on hydrodynamic interactions. We hope to stimu-
late experimental investigations of the correlation functions
In this paper, we have presented the complete solution fopresented in this paper.

the hydrodynamically coupled translational and rotational In.the Introduction, we ha_ve already men'uon(_ad the f|g|d
motions of two colloidal spheres that are harmonicaIIyOf microrheology. An extension of our work to viscoelastic

trapped with respect to both their positions and orientationined'a based on the theoretical approach presented in Ref.
I

-0.03

-0.02

-0.01

norm. self-correl. (% E+Dr0 )

norm. cross-correl. {31, (¢ +7) 75, (1))

V. CONCLUSIONS

Based on pure symmetry arguments and without relyin l7]_seems appealln_g. The _rotatlonal motion of the P“’b_e
on explicit values of the mobilities, we have determined al article results in an _mte_restmg deformqtlonal mode since it
the 12 collective eigenmodes and qualitatively discusse troduces.some torsion In the sur.roundlng medlu_m. It ther.e—
their relaxation times. Whereas the properties of the Iongitu-Ore can yield additional information about the viscoelastic
dinal modes are reminiscent to a system with pure translaroPertes.
tional degrees of freedom, the transversal modes exhibit a
characteristic coupling of translation and rotation.

In a detailed Langevin-type analysis, we have been able to We would like to thank Paul Bartlett, Thomas Gisler,
derive the full set of correlation functions characterizing theGeorg Maret, and Stephen Martin for fruitful discussions.
Brownian motion of the particles in the optical traps. TheThis work was supported by the Deutsche Forschungs-
analysis relies on the eigenvalue problem of nonsymmetrigemeinschaft through the Sonderforschungsbereich Trans-
matrices. Explicit examples for the correlation functions atregio 6 “Physics of colloidal dispersions in external fields.”
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