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Hydrodynamic coupling of two rotating spheres trapped in harmonic potentials

Michael Reichert* and Holger Stark
Fachbereich Physik, Universita¨t Konstanz, D-78457 Konstanz, Germany

~Received 11 July 2003; revised manuscript received 14 October 2003; published 30 March 2004!

We theoretically study in detail the hydrodynamic coupling of two equal-sized colloidal spheres at low
Reynolds numbers assuming the particles to be harmonically trapped with respect to both their positions and
orientations. By taking into account the rotational motion, we obtain a rich spectrum of collective eigenmodes
whose properties we determine on the basis of pure symmetry arguments. Extending recent investigations on
translational correlations@J.-C. Meiners and S. R. Quake, Phys. Rev. Lett.82, 2211 ~1999!#, we derive the
complete set of autocorrelation and cross-correlation functions emphasizing the coupling of rotation to trans-
lation which we illustrate in a few examples. An important feature of our system is the self-coupling of
translation and rotation of one particle mediated by the neighboring particle that is clearly visible in the
appropriate autocorrelation function. This coupling is a higher-order effect and therefore not included in the
widely used Rotne-Prager approximation for the hydrodynamic mobilities.
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en
i

ow
r-

pl
icl
th

i
n-
qu
ie
th
sla
d

in
c
a
cl
e

ke

ha
s-
o
o

d
g
ev
icu
th
or

h-

rec-
res

us-
le,
in

l
an
en-
rly
lar-

ped
rip-
cs.
lel
ns-
la-
e-
the

of

the

ong
I. INTRODUCTION

Colloids are widely used to model atomic systems@1,2#.
However, there is one feature specific to colloidal susp
sions which distinguishes them fundamentally from atom
systems: the so-called hydrodynamic interactions@3,4#. A
particle moving in a viscous fluid creates a long-range fl
field around itself through which it interacts with other pa
ticles. Thus, hydrodynamic interactions constitute a com
cated many-body problem since the motion of one part
depends on the translations and rotations of all the o
particles in the fluid@5#.

The central quantities in the description of hydrodynam
interactions are the mobility or friction tensors which co
nect in a linear response scheme all the forces and tor
acting on the particles to their linear and angular velocit
@6#. In the present paper, we draw special attention to
rotational degree of freedom and how it couples to tran
tion. Its physical consequences have rarely been treate
literature@7–9#.

In many physically interesting systems, hydrodynamic
teractions play an important role. Whenever dynamic effe
in suspensions are studied, hydrodynamic interactions h
to be taken into account. Examples are sedimenting parti
@10,11# or the apparent attractive interaction between lik
charged spherical particles mediated by a single, li
charged wall@12#.

In recent years, a new method called microrheology
been developed@13# and applied to several biological sy
tems@14,15#. It is used to determine rheological properties
viscous and viscoelastic media by tracking the trajectory
embedded probe particles and calculating the time-depen
position correlations. The so-called two-point microrheolo
employs a system of two colloidal particles, which has s
eral advantages over using only a single particle; in part
lar, the correlated motions of two tracer particles reflect
bulk rheology of the medium they are embedded in m

*Electronic address: michael.reichert@uni-konstanz.de
1063-651X/2004/69~3!/031407~9!/$22.50 69 0314
-
c

i-
e
er

c

es
s
e
-
in

-
ts
ve
es
-
-

s

f
f

ent
y
-
-

e
e

accurately@16,17#. Many experiments based on this tec
nique have been carried out to study soft media@18–21#.
Furthermore, this method was used to measure the cor
tions to the diffusion coefficients in a system of two sphe
due to hydrodynamic interactions@22# and to study the hy-
drodynamic coupling of two spheres to a wall@23#.

The physical systems we have in mind are colloidal s
pensions of birefringent spherical particles. For examp
they are realized by polymerizing the nematic order
liquid-crystal droplets@24,25#. In contrast to conventiona
isotropic colloids, both their positions and orientations c
be manipulated by optical tweezers. In particular, the ori
tation is controlled with optical traps generated by linea
polarized laser light and is detected, e.g., with crossed po
izers @24–26# ~see Fig. 1!.

In the present paper, we consider a system of two trap
spheres of equal size. We give a complete analytic desc
tion of the coupled translational and rotational dynami
Due to the axial symmetry, the longitudinal motions paral
to the particle-particle axis decouple completely from tra
versal motions. In addition, there is no coupling of trans
tion and rotation in longitudinal motions. This greatly r
duces the complexity of the problem. We determine

FIG. 1. Sketch of a setup to monitor rotational correlations
two birefringent particles. The particles are situated on thez axis.
The laser beam of the orientational optical trap is directed along
y axis and its polarization points intox direction. To monitor trans-
versal correlations, the direction of observation is along they axis.
Pure longitudinal rotational correlations are only observable al
the z axis.
©2004 The American Physical Society07-1
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complete set of collective eigenmodes of the system and
culate the correlations for particles undergoing thermal fl
tuations. Our work extends recent investigations on corr
tions in translational fluctuations@18–20#. By taking into
account the rotational degrees of freedom, we obtain a
spectrum of collective modes and correlation functions.

The outline of this paper is as follows. In Sec. II, we fir
summarize the basic equations for the description of hyd
dynamic interactions in general. Then, we study in detail
two-particle system and show by symmetry arguments ho
decouples into the aforementioned longitudinal and trans
sal motions. Assuming that both the particles’ positions a
orientations are trapped in harmonic potentials, we determ
and discuss their collective eigenmodes in Sec. III. Finally
Sec. IV, we use Langevin dynamics to calculate correlat
functions for the thermally fluctuating positions and orien
tions of the trapped particles and point out their interest
features.

II. HYDRODYNAMIC INTERACTIONS

A. Fundamental equations

In the regime of low Reynolds numbers and on t
Brownian time scale, the flow of an incompressible flu
with viscosityh obeys the Stokes or creeping flow equatio
@3#

h¹2u2“p50, “•u50, ~1!

whereu is the flow field andp the hydrodynamic pressure
Stokesian dynamics describes overdamped motion in a
cous fluid. In the following, we consider motions of particl
in an unbounded and otherwise quiescent fluid, i.e.,u50 at
infinity.

Imposing stick boundary conditions on the surfaces of
N particles suspended in the fluid at positionsr i ( i
51, . . . ,N), the motions of the particles are mutual
coupled via the flow field. Due to the linearity of Eqs.~1!,
the translational and rotational velocities of the particles,v i
and vi , depend linearly on all external forces and torqu
acting on the particles,F j andTj @6#:

v i5(
j 51

N

~mi j
tt F j1mi j

tr Tj , ~2a!

vi5(
j 51

N

~mi j
rt F j1mi j

rrTj !. ~2b!

The central quantities constituting the mutual coupling
translation and rotation~denoted by superscriptst and r ) of
two particlesi and j are the 333 mobility tensorsmi j

tt , mi j
rr ,

mi j
tr , andmi j

rt . They depend on the current spatial configu
tion of all particles, i.e., the set of position vecto
$r1 , . . . ,rN% in the case of spherical particles.

To introduce a more compact notation, we define
6N-dimensional vectorsV5@v1 , . . . ,vN ,v1 , . . . ,vN# and
F5@F1 , . . . ,FN ,T1 , . . . ,TN#. Then, Eqs.~2! take the form

V5MF ~3!
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with the 6N36N mobility matrix

M5F @mi j
tt # @mi j

tr #

@mi j
rt # @mi j

rr#
G , ~4!

where the four blocks ofM consist each ofN3N matrices
whose elements are the 333 mobility tensors; e.g.,

@mi j
tt #5F m11

tt
••• m1N

tt

A � A

mN1
tt

••• mNN
tt
G . ~5!

According to the reciprocal theorem of Lorentz, the mobil
tensors fulfill the symmetry relations@6#

~mi j
tt !T5mj i

tt , ~mi j
rr !T5mj i

rr , ~mi j
tr !T5mj i

rt , ~6!

where (mi j
tt )T denotes the transpose ofmi j

tt , etc. Thus, the
entire 6N36N matrix M is symmetric.

In the overdamped limit discussed here, the work done
the particles by the external forces and torquesF is com-
pletely dissipated in the fluid, so the energy dissipation r
( i(v i•F i1vi•Ti)5V•F5V•M21V has to be positive.
Therefore, the friction matrixM21 and hence the mobility
matrix M itself are positive definite.

There are several methods to calculate the mobility t
sors for a given many-particle system, e.g., the concep
reflected flow fields using the gradient expansion techni
@3,6# or the method of induced force multipoles@5,27#. The
latter was implemented in the numerical libraryHYDROLIB

@28# which calculates the mobility or friction matrix for a
given configuration of spheres.

B. Two-sphere system

In the following, we consider a system of two equal-siz
spheres. Letr be the vector connecting the centers of the t
spheres, pointing from sphere 1 to sphere 2, andr the center-
to-center distance. Then,r̂5r/r is the unit vector along the
line of centers. Due to the rotational symmetry about the a
r̂ and the different parities of polar (v i andF i) and pseudo-
vectors (vi and Ti), the mobility tensors can be written a
@29#

mi j
tt ~r!5m i j

tti~r ! r̂ ^ r̂1m i j
tt'~r !~12 r̂ ^ r̂!, ~7a!

mi j
rr~r!5m i j

rri~r ! r̂ ^ r̂1m i j
rr'~r !~12 r̂ ^ r̂!, ~7b!

mi j
tr ~r!5m i j

tr'~r ! r̂3. ~7c!

The mobility coefficientsm i j
tti ,' , m i j

rri ,' , andm i j
tr' ( i , j 51,2)

are scalar functions depending only on the center-to-ce
distancer. They describe motions parallel and perpendicu
to the axis, respectively. Using the general symmetry re
tions ~6! and the fact that particles 1 and 2 are identical,
mobility coefficients obey@29#

m11
tti ,'5m22

tti ,' , m11
rri ,'5m22

rri ,' , m11
tr'52m22

tr' , ~8a!
7-2
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m12
tti ,'5m21

tti ,' , m12
rri ,'5m21

rri ,' , m12
tr'52m21

tr' . ~8b!

With the explicit expressions~7!, the dynamics of the
two-sphere system described by Eq.~3! separates into longi
tudinal motions parallel and transversal motions perpend
lar to the particle-particle axisr̂. Furthermore, longitudina
translations and longitudinal rotations~i.e., rotations about
the axis! do not couple to each other because of the differ
parities of translations~polar vectors! and rotations~axial
vectors!. In a Cartesian coordinate system with thez direc-
tion pointing alongr̂ ~see Fig. 2!, we obtain from Eqs.~2!,
~7!, and~8b! for longitudinal motions

F v1z

v2z

v1z

v2z

G5F m11
tti m12

tti 0 0

m12
tti m11

tti 0 0

0 0 m11
rri m12

rri

0 0 m12
rri m11

rri
G F F1z

F2z

T1z

T2z

G , ~9!

wherev1z is thez component of the translational velocity o
particle 1, etc. In transversal motions, translations along thx
direction are coupled to rotations about they axis:

F v1x

v2x

v1y

v2y

G5F m11
tt' m12

tt' 2m11
tr' 2m12

tr'

m12
tt' m11

tt' m12
tr' m11

tr'

2m11
tr' m12

tr' m11
rr' m12

rr'

2m12
tr' m11

tr' m12
rr' m11

rr'

G F F1x

F2x

T1y

T2y

G .

~10!

Translations along they direction and rotations about thex
axis obey an equivalent system of equations.

Defining a four-dimensional velocity vectorv and a force
vector f, we abbreviate Eqs.~9! and ~10!, respectively, by

v5mf, ~11!

where the appropriate 434 mobility matrix m is still sym-
metric. Thus, rotational symmetry reduces the full 12312
problem~3! to two 434 problems, where Eq.~9! is essen-
tially a 232 problem.

Accordingly, the energy dissipation rateV•M21V splits
up into a sum of three independent terms of the fo
v•m21v, so the single-mobility matricesm have to be posi-
tive definite.

FIG. 2. Definition of the applied Cartesian coordinate syste
Thez direction is along the center-to-center line of the two sphe
Longitudinal motions~a! decouple from transversal motions~b!.
Furthermore, there is no coupling of translation and rotation
longitudinal motions.
03140
u-

t

C. Mobilities in Rotne-Prager approximation

For a system of two particles, the mobility tensors can
calculated, e.g., with the method of reflections based on
Faxén theorem. It provides a systematic expansion of
mobility tensors in powers of the inverse particle separat
~for a detailed description, see, e.g., Ref.@3#!.

The leading order in the far-field approximation of th
mobilities is the well-known Oseen tensor which consid
the particles as pointlike and hence does not include r
tions. The next-higher order is the so-called Rotne-Pra
approximation. It corresponds to one reflection of the flo
field and is therefore exact up to the order of 1/r3, where
r5r /a is the dimensionless particle distance (a is the radius
of the spheres!. The relevant mobilities including the rota
tional degrees of freedom are presented, e.g., in R
@30,29#. They also follow straightforwardly by extending th
calculations in Ref.@3#, where the torques are explicitly se
to zero.

In the Rotne-Prager approximation, the self-mobilities a
identical to the Stokes coefficients for single spheres,

mi i
tt 5m t1, where m t5~6pha!21, ~12!

mi i
rr5m r1, where m r5~8pha3!21, ~13!

and there is no self-coupling of translation and rotation, i

mi i
tr5mi i

rt50. ~14!

Note that for an isolated sphere within the linear Stokes
gime, translation and rotation are not coupled; the so-ca
Magnus effect only enters via the nonlinear term in t
Navier-Stokes equation@31#. On the other hand, in the two
sphere system, the self-coupling exists since it is media
by the second particle. However, this is an effect of high
order than 1/r3 and therefore not included in the Rotn
Prager approximation, as stated in Eq.~14!.

For completeness, we also give the essential cross mo
ties:

m12
tt 5m tF 3

4r
~11 r̂ ^ r̂!1

1

2r3
~123r̂ ^ r̂!G , ~15!

m12
rr 5m rF2

1

2r3
~123r̂ ^ r̂!G , ~16!

m12
tr 5m rFa

1

r2
r̂3G . ~17!

III. EIGENMODES OF TWO TRAPPED SPHERES

We aim to study thermal motions of particles that a
trapped with respect to both their positions and orientatio

.
s.

r
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Assuming that the spatial and angular displacements
small, we consider harmonic trap forces and torques, i.e

Fia52ktr ia , ~18!

Tia52krx ia , ~19!

where kt and kr are positive force and torque constantsi
51,2 is the particle number anda5x,y,z the coordinate
index!. The particle velocities are

v ia5 ṙ ia , ~20!

where the spatial coordinater ia denotes the displacement o
particle i along directiona.

The anglex ia describes the rotation of particlei about the
coordinate axisa. As long as this angular displacement
small (̂ x ia

2 &!1), we can relate it to the angular velocity v

v ia5ẋ ia . ~21!

This is a nontrivial statement and requires some explanat
The optical axis of the trapped birefringent particle alig
along the polarization of the laser trap pointing along, e
the x axis ~see Fig. 3!. Any deviation of the particle orienta
tion from thex direction is described by the anglesx iy and
x iz , and relaxes in the optical trap on the time sc
(krm r)21. However, the free rotational diffusion of the pa
ticle axis about thex direction also changes the angular d
placementsx iy and x iz ~see Fig. 3!, and therefore, relation
~21! does not hold in general. Nevertheless, in the limit co
sidered here the orientational relaxation is a much faster
cess than the free diffusion, so on the relaxation time sc
(krm r)21, the free diffusion can be neglected and relati
~21! is applicable. To show this, we note that the free ro
tional diffusion takes place on the time scale (kBTm r)21.
Requiring that (krm r)21/(kBTm r)215kBT/kr!1 and using

FIG. 3. While the rotation of the optical axis of the trapp
particle about the direction of the trap polarization~here pointing
along thex axis! is free, the deviation from thex direction is re-
stricted, and therefore the angular displacementsx iy and x iz are
small ~see text!.
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the equipartition theorem yieldŝx ia
2 &5kBT/kr!1, which is

consistent with the initial assumption.
We define generalized coordinatesq5@r 1z ,r 2z ,x1z ,x2z#

for longitudinal modes andq5@r 1x ,r 2x ,x1y ,x2y# for trans-
versal modes, and combine the corresponding trap fo
~18! and torques~19! into a four-dimensional vector

f52kq ~22!

with the diagonal force constant matrix

k5F kt 0 0 0

0 kt 0 0

0 0 kr 0

0 0 0 kr

G . ~23!

Then, the equation of motion~11! for both longitudinal and
transversal modes reads

q̇1mkq50, ~24!

wherem is the appropriate mobility matrix given by Eqs.~9!
and ~10!, respectively. Note that for spatial displacemen
small compared to the equilibrium particle distance, we c
considerm to be constant.

The solutions of Eq.~24! are relaxational eigenmode
e2lntan with relaxation ratesln or relaxation timesln

21 .
They are determined by the eigenvalue problem

mkan5lnan ~n51, . . . ,4! ~25!

of the nonsymmetric 434 matrixmk whose eigenvectorsan
are in general not perpendicular to each other. In the n
two sections, we will analyze the eigenmodes in detail.

A. Longitudinal eigenmodes

To study the longitudinal eigenmodes, the traps have to
polarized along thex or y direction so that the angular dis
placementsx iz are small. Since longitudinal translations an
rotations are decoupled~as discussed in Sec. II B!, we can
immediately write down the eigenvalues and eigenvector
the four eigenmodes:

l1/25kt~m11
tti6m12

tti !, a1/25@1,61,0,0#, ~26a!

l3/45kr~m11
rri6m12

rri!, a3/45@0,0,1,61#. ~26b!

They consist of relative (2) and collective (1) modes. In-
tuitive arguments allow a comparison of the respective rel
ation rates. For example, when the spheres translate in o
site directions~relative translational modea2), some fluid
has to be pulled into or squeezed out of the region betw
the two particles; or when they rotate in opposite directio
~relative rotational modea4), the fluid between the sphere
has to be sheared. On the other hand, when the spheres
late or rotate collectively~modesa1 or a3), the fluid sur-
rounding the spheres is just ‘‘displaced’’ or ‘‘rotated’’ as
whole. So the collective modes experience less resista
7-4
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HYDRODYNAMIC COUPLING OF TWO ROTATING . . . PHYSICAL REVIEW E69, 031407 ~2004!
and therefore relax faster than the relative modes. This i
accordance with Eqs.~26! which givel1.l2 andl3.l4.

B. Transversal eigenmodes

The appropriate coordinates to treat the transversal ei
modes areq5@r 1x ,r 2x ,x1y ,x2y#, and the mobility matrixm
is given by Eq.~10!. The polarization of the traps has to b
chosen along thex or z direction so that the anglesx iy are
small.

The diagonalization of the nonsymmetric 434 matrixmk
is not immediately obvious. However, symmetry argume
help to identify the eigenvectors. Since the two particles
identical and since spatial coordinates and angles pos
different parities, one readily shows that the eigenvect
have to be of the form@A,A,B,2B# or @A,2A,B,B#. This
constraint simplifies the determination of the eigenmo
considerably. There are two relaxational modes with sy
metric translation and antisymmetric rotation,

l1/25
1
2 @ktm1

tt'1krm2
rr'6A~ktm1

tt'2krm2
rr'!214ktkr~m2

tr'!2#,

~27a!

a1/25@A1/2,A1/2,B1/2,2B1/2#, ~27b!

where

A1/2522krm2
tr' , ~27c!

B1/252~ktm1
tt'2krm

2rr'

6A~ktm1
tt'2krm2

rr'!214ktkr~m2
tr'!2, ~27d!

and two modes with antisymmetric translation and symm
ric rotation,

l3/45
1
2 @ktm2

tt'1krm1
rr'6A~ktm2

tt'2krm1
rr'!214ktkr~m1

tr'!2#,
~28a!

a3/45@A3/4,2A3/4,B3/4,B3/4#, ~28b!

where

A3/4522krm1
tr' , ~28c!

B3/452~ktm2
tt'2krm1

rr'!

6A~ktm2
tt'2krm1

rr'!214ktkr~m1
tr'!2. ~28d!

Here, we use the abbreviationsm6
tt'5m11

tt'6m12
tt' , etc.

Without relying on the exact values of all the mobilitie
we can already infer the qualitative characteristics of
eigenmodes based on general arguments. The signs o
componentsB1 –4 are independent of the mobility coeffi
cients. It isB1.0, B2,0, B3.0, andB4,0. The signs of
A1 –4 depend on the signs ofm6

tr' . In Sec. II C, we already
discussed on the basis of the reflection method that the
solute value of the cross mobilitym12

tr' is larger than the
self-mobility m11

tr' . Furthermore, by considering the spec
03140
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casev1x52m12
tr'T2y ~for the geometry, see Fig. 2!, we infer

thatm12
tr' is positive. Thus,m1

tr'.0 andm2
tr',0, and we find

A1/2.0 andA3/4,0.
We note that all eigenvalues ofmk are positive. To prove

this statement, we requireln.0 in Eqs.~27a! and~28a! and
find the conditionm6

tt'm7
rr'.(m7

tr')2, which is the same
guaranteeing that the mobility matrix is positive definite.

The eigenmodes described by Eqs.~27b! and ~28b! are
illustrated in Fig. 4. The mode in Fig. 4~a! corresponds to the
eigenvectora1, and the one in Fig. 4~b! to a3. Each of the
modes is complemented by a mode with opposite direc
of rotation corresponding to the eigenvectorsa2 anda4, re-
spectively. Figure 4 shows the faster modes, i.e.,l1.l2 and
l3.l4. The reason for this is simply that the relaxatio
described bya1 anda3 show qualitatively the same behavio
as if the particles were not trapped with respect to their o
entations (kr50). Hence,a2 and a4 correspond to modes
where the orientational relaxation is opposite to this ‘‘na
ral’’ direction of rotation. Therefore, these modes are slow
compared to their respective partnersa1 anda3.

These qualitative considerations are in agreement with
act numbers for the eigenvalues which we plot in Fig. 5 a
function of the particle distance. Furthermore, for large d
tances, rotational and transversal motions decouple sincel1/3
tend towards the single-particle translational relaxation r
ktm t whereasl2/4 assume the corresponding rotational val
krm r. As obvious from the figure, this decoupling occurs f
the rotational motion at shorter distances compared to tra
lations since rotational flow fields decay faster than trans
tional ones.

IV. TIME CORRELATIONS IN BROWNIAN MOTION

To treat the Brownian motion of the two spheres, tim
dependent random forces and torquesf̃(t) mimicking the
microscopic degrees of freedom of the surrounding fl
have to be added. The total generalized force vector is t
f52kq1 f̃(t). Extending Eq.~24!, we obtain the Langevin-
type equation

FIG. 4. Transversal eigenmodes of two trapped spheres~white:
relaxed equilibrium state!. There are two modes with collectiv
translation and relative rotation~a! and two modes with relative
translation and collective rotation~b!. For each mode shown, ther
is a complementary mode with opposite direction of rotation.
7-5



e
h
n

io

s

a

t
,

to

i-

its

e

ec-
s

ow-

dy
reti-
e-
nc-
ve
-

or-
This

by
his
de-

n
ry

-
nter

are

M. REICHERT AND H. STARK PHYSICAL REVIEW E69, 031407 ~2004!
q̇1mkq5mf̃~ t !, ~29!

which describes a so-called Ornstein-Uhlenbeck proc
@32#. The random force is assumed to be a Gaussian w
noise and is fully characterized by its first and seco
moments,

^ f̃~ t !&50, ^ f̃~ t ! ^ f̃~ t8!&52kBT m21d~ t2t8!. ~30!

The fluctuation-dissipation theorem~30! relates the second
moment of the fluctuating forces and torques to the frict
matrix m21 @33#.

The formal solution of the Ornstein-Uhlenbeck proce
described by Eq.~29! reads@32#

q~ t !5e2mktq~0!1E
0

t

dt8e2mk(t2t8)mf̃~ t8!, ~31!

where the matrix exponential is defined, as usual, by its T
lor expansione2mkt5(s50

` (2mkt)s/s! Since we are only
interested in the fluctuating part ofq(t), we omit the deter-
ministic relaxatione2mktq(0) due to an initial displacemen
by choosingq(0)50. In calculating the correlation matrix
we employ the second part of Eq.~30! and consider the
long-time limit (t@ln

21), where the system has relaxed
thermal equilibrium. We finally obtain

^q~ t1t! ^ q~ t !&5kBTe2mktk21, t>0. ~32!

Note that the correlation matrix is symmetric, i.e.,^q(t1)
^ q(t2)&5^q(t2) ^ q(t1)&.

To express the correlation functions explicitly in coord
nates, we introduce the dual eigenvectorsbn via (mk)Tbn
5lnbn . Together with the eigenvectorsan , they fulfill the
orthonormality and completeness relations:am•bn5dmn and
(nan^ bn51. Representing the matrix exponential by
spectral decomposition,e2mkt5(ne2lntan^ bn , we obtain
from Eq. ~32!

FIG. 5. Eigenvalues of the transversal modes@Eqs. ~27a! and
~28a!# as a function of the dimensionless center-to-center dista
r5r /a. The mobilities were calculated using the numerical libra
HYDROLIB @28#. The trap constants are chosen askt5kr.
03140
ss
ite
d

n

s

y-

^qm~ t1t!qn~ t !&5
kBT

knn
(

l
e2l ltalmbln , ~33!

wherealm (bln) is themth (nth! component of the vectoral
(bl) and knn the nth element of the diagonal matrixk (knn
5kt,kt,kr,kr). Normalizing the correlation function to th
square roots of the mean square displacements^qn

2&
5kBT/knn , we finally arrive at

^qm~ t1t!qn~ t !&

A^qm
2 &^qn

2&
5Akmm

knn
(

l
e2l ltalmbln . ~34!

A. Longitudinal motions

Longitudinal motions are characterized by the eigenv
tors and eigenvalues in Eq.~26!. Translations and rotation
are decoupled. So the respective autocorrelations (1) and
cross-correlation (2) for rotational motions are given by
@exp(2krm1

rrit)6exp(2krm2
rrit)#/2, where m6

rri5m11
rri6m12

rri .
For translations, the correlation functions are the same, h
ever the relaxation rates are replaced byktm6

tti @18–20#.
The correlations for translational motions have alrea

been measured experimentally and compared with theo
cal predictions@18–20#. These works reveal a good agre
ment between theory and experiment. The correlation fu
tions for rotational motions show the same qualitati
behavior ~Fig. 6!, however with some quantitative differ
ences.

First of all, we realize that the strength of the cross c
relations decreases with increasing particle separation.
is explained by the decrease of the cross mobilitym12

rri ,
which is due to the spatial decay of the flow fields created
the particle rotation. Compared to translational motions, t
decrease is more pronounced since rotational flow fields
cay stronger than their translational counterparts.

ce
FIG. 6. Correlation functions for longitudinal rotational mo

tions. The curve labels indicate the dimensionless center-to-ce
distancer5r /a. The functions are normalized to the mean squ
angular displacement^x iz

2 &5kBT/kr. The mobilities were calculated
using the numerical libraryHYDROLIB @28#.
7-6
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HYDRODYNAMIC COUPLING OF TWO ROTATING . . . PHYSICAL REVIEW E69, 031407 ~2004!
Second, while the autocorrelation reveals the typi
monotonous decay, the cross-correlation function feature
interesting behavior. It is negative~denoted as ‘‘anticorrela
tion’’ in Ref. @18#!, since the relative modes decay mo
slowly than the collective ones, as already mentioned in S
III A. Therefore, the negative term in the cross-correlati
function in the first paragraph dominates.

The most interesting feature of the cross-correlation fu
tion is that it exhibits a ‘‘memory effect.’’ It vanishes att
50, in contrast to what one would initially expect for th
instantaneous hydrodynamic forces in Stokesian dynam
and then shows a distinct time-delayed extremum~located at
t* in Fig. 6!. This behavior can be understood as follow
The motion of particle 1 creates a fluid flow which instan
neously reaches particle 2. However, due to the trap, par
2 can only ‘‘react’’ in a finite time. Thus, the correlatio
evolves on a characteristic time scale which is related to
relaxation times and thereby to the trap stiffness. Since
‘‘memory’’ is ‘‘stored’’ in the trap, it cannot last longer than
the typical relaxation time. Hence, the correlation decays
zero for times larger thant* .

For sufficiently large particle distances, the self-mobil
m11

rri is much bigger than the cross mobilitym12
rri . Then, to

leading order, the characteristic time scale is given by
single-particle rotational relaxation timet* 5(krm r)21, in
analogy to the translational case@18–20#. Indeed, according
to Fig. 6, t* depends only very weakly on the particle di
tance. Nevertheless, the cross mobilitym12

rri is sufficiently
large to separate the two time scales (krm1

rri)21 and
(krm2

rri)21, which is the origin of the anticorrelation.

B. Transversal motions

The transversal eigenmodes are characterized by Eqs.~27!
and~28!. Since the two types of eigenvectors are orthogo
to each other, i.e.,a1/2•a3/450, the dual vectorsb1/2 are lin-
ear combinations ofa1 anda2 only; the equivalent holds fo
b3/4. One finds

bn5
uan̄u2an2~an•an̄!an̄

uanu2uan̄u22~an•an̄!2
, ~35!

where the index combinations are (nun̄)5(1u2), (2u1),
(3u4), (4u3). The correlation functions for the coordinat
q15r 1x , q25r 2x , q35x1y , andq45x2y are obtained from
Eq. ~34!. Now, they are linear combinations of four expone
tial decays.

The autocorrelation functionŝ r 1x(t1t)r 1x(t)& and
^x1y(t1t)x1y(t)& show qualitatively the same monotono
decay as in the case of longitudinal fluctuations~see Fig. 6!.
All the other correlation functions exhibit the features of t
longitudinal cross correlation discussed in Sec. IV A~except
for the sign!.

As representative examples, the correlation functions
rotations about they axis and translations along thex direc-
tion, ^x1y(t1t)r 1x(t)& and^x1y(t1t)r 2x(t)&, are plotted in
Fig. 7. In the following, we will refer to them briefly a
mixed self-correlation and cross correlation, describing
03140
l
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r

e

self-coupling and cross coupling of rotation and translati
respectively.

Both correlation functions show a distinct time-delay
extremum, denoted byts* andtc* in Fig. 7. The mixed cross
correlation is interpreted in the same fashion as the long
dinal cross correlation in the preceding section.

The most striking feature is revealed by the mixed se
correlation. For a single sphere, translation and rotation
not coupled@31#, i.e., the mixed~self-!correlation vanishes
However, in the two-sphere system, there exists a mixed s
correlation, as shown in Fig. 7, that is mediated by the nei
boring particle. This correlation is weaker than the mix
cross correlation since the flow field created by particle 1
to be reflected by particle 2. As discussed before, partic
reacts with a finite delay due to the trap stiffness. Then
addition, particle 1 also has a finite ‘‘reaction time.’’ Henc
we always expectts* .tc* .

We also studied the influence of the trap stiffnesseskt and
kr on the correlation functions. As illustrated in Fig. 8, th
difference in the delay timests* and tc* decreases with in-
creasing ratiokt/kr. Furthermore, we observe that the corr
lations are strongest forkt'kr.

FIG. 7. Correlation functions for transversal motions. T
curves shown are the mixed cross-correlation and self-correla
for angle and position. The curve labels indicate the dimension
center-to-center distancer5r /a. The trap constants are chosen
kt5kr. The functions are normalized to the square roots of the m
square displacementŝx iy

2 &5kBT/kr and ^r ix
2 &5kBT/kt @see Eq.

~34!#.
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M. REICHERT AND H. STARK PHYSICAL REVIEW E69, 031407 ~2004!
Note that the mixed self-correlations cannot be trea
within the Rotne-Prager approximation. They constitute
additional effect of higher order, as mentioned in Sec. II

V. CONCLUSIONS

In this paper, we have presented the complete solution
the hydrodynamically coupled translational and rotatio
motions of two colloidal spheres that are harmonica
trapped with respect to both their positions and orientatio

Based on pure symmetry arguments and without rely
on explicit values of the mobilities, we have determined
the 12 collective eigenmodes and qualitatively discus
their relaxation times. Whereas the properties of the long
dinal modes are reminiscent to a system with pure tran
tional degrees of freedom, the transversal modes exhib
characteristic coupling of translation and rotation.

In a detailed Langevin-type analysis, we have been abl
derive the full set of correlation functions characterizing t
Brownian motion of the particles in the optical traps. T
analysis relies on the eigenvalue problem of nonsymme
matrices. Explicit examples for the correlation functions

FIG. 8. Mixed self-correlation~label s) and cross correlation
~labelc) for various trap constant ratioskt:kr. The force constantkt

was varied (kt50.01, 1, and 100), while the torque constant w
kept fixed (kr51). The qualitative behavior of the functions~dis-
cussion see text! is the same for different particle distances~here
r54).
tic
a

-
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different particle separations have been calculated base
mobilities which we obtained from the numerical libraryHY-
DROLIB @28#.

The longitudinal fluctuations exhibit the features alrea
mentioned in Refs.@18–20#, namely, a memory effect in the
cross correlations. The transverals fluctuations are gove
by the coupling of translations and rotations. As the m
striking feature, this coupling is also visible in the se
correlations which are governed by a second delay time
addition to the one observed in the cross correlations.
self-coupling of translation and rotation for one sphere ha
be mediated by a second sphere. It is not included in
Rotne-Prager approximation and therefore introduces an
ditional effect of higher order.

Correlation functions involving the rotational degrees
freedom are weaker compared to pure translational corr
tions since the flow field of a single rotating sphere decays
1/r 2, compared to translating particles where the decay
1/r . However, the strength of the correlations increases
decreasing particle separation which is more pronoun
whenever rotations are involved. Furthermore, at sufficien
small distances, lubrication theory becomes important@34#,
and the system introduced in this paper may help to chec
predictions.

Our work stresses the rotational degree of freedom and
influence on hydrodynamic interactions. We hope to stim
late experimental investigations of the correlation functio
presented in this paper.

In the Introduction, we have already mentioned the fie
of microrheology. An extension of our work to viscoelast
media based on the theoretical approach presented in
@17# seems appealing. The rotational motion of the pro
particle results in an interesting deformational mode sinc
introduces some torsion in the surrounding medium. It the
fore can yield additional information about the viscoelas
properties.
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