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We numerically investigate the interaction between two spherical particles in a nematic liquid crystal me-
diated by elastic distortions in the orientational order. We pay attention to the cases where two particles with
equal radiiR0 impose rigid normal anchoring on their surfaces and carry a pointlike topological defect referred
to as a hyperbolic hedgehog. To describe the geometry of our system, we use bispherical coordinates, which
prove useful in the implementation of boundary conditions at the particle surfaces and at infinity. We adopt the
Landau–de Gennes continuum theory in terms of a second-rank tensor order parameterQij for the description
of the orientational order of a nematic liquid crystal. We also utilize an adaptive mesh refinement scheme that
has proven to be an efficient way of dealing with topological defects whose core size is much smaller than the
particle size. When the two “dipoles,” composed of a particle and a hyperbolic hedgehog, are in parallel
directions, the two-particle interaction potential is attractive for large interparticle distancesD and proportional
to D−3 as expected from the form of the dipole-dipole interaction, until the well-defined potential minimum at
D.2.46R0 is reached. For the antiparallel configuration with no hedgehogs between the two particles, the
interaction potential is repulsive and behaves asD−2 for D&10R0, which is stronger than the dipole-dipole
repulsions,D−3d expected theoretically as an asymptotic behavior for largeD.
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I. INTRODUCTION

Colloidal dispersions[1] can be found and are extensively
used in our daily life such as foods, paints, and drugs. They
are therefore of technological importance and one of the im-
portant subjects of fundamental science as well. Colloidal
particles are either flocculated or uniformly dispersed in a
host fluid, depending on the interaction between particles or
droplets. Since for practical use, the properties of colloidal
dispersions crucially depend on the collective behavior of the
suspended particles or dispersed droplets, it is quite impor-
tant to understand the two-particle interactions in a colloidal
dispersion. The already known colloidal interactions include
van der Waals, electrostatic, depletion[1,2] and fluctuation-
induced forces[3].

Recently, colloidal dispersions in anisotropic host fluids
such as liquid crystals[4–17] have been attracting growing
interest as a different class of composite materials compared
to conventional colloids with isotropic hosts. One of the in-
teresting and important features of such liquid crystal colloi-
dal dispersions is that elastic distortions of the host liquid
crystal can mediate a long-range interaction between par-
ticles immersed in it[18–39], which is different in the sense
that such interactions are absent in usual colloidal disper-
sions with isotropic host fluids. The elastic distortions of the
host liquid crystal arise from the anchoring of the mesogenic
molecules on the surfaces of the dispersed particles or drop-
lets, and the resulting interaction forces mediated by the liq-

uid crystal can be measured directly in experiments[18,19].
The long-range nature of the interaction is attributed to the
fact that some of the elastic modes in liquid crystals are
massless or of Goldstone type, and many analytical studies
concerning the interaction between particles in a liquid crys-
tal have been carried out so far[20–32]. In the case of a
nematic liquid crystal, Lopatnikov and Namiot[20] pointed
out the possibility of dipole-dipole particle interactions, i.e.,
the two-particle potential is anisotropic and proportional to
D−3 with D being the interparticle distance. Later, Ra-
maswamyet al. [21] and Ruhwandl and Terentjev[22] found
that the interaction between spherical particles with weak
surface anchoring is quadrupolar with the potential being
proportional toD−5. Lubenskyet al. [23] showed by a phe-
nomenological argument that particles carrying a topological
defect called a hyperbolic hedgehog[5,6] act as a “dipole”
and the long-range interaction between them is of the same
form as found by Lopatnikov and Namiot[20] mentioned
above. Lev and co-workers[24] stressed that the symmetry
of the particle shape serves as a crucial factor determining
the type of the long-range interaction. The effect of confine-
ment and confinement-induced director distortions has also
been investigated[25]. Other types of liquid crystal phases
such as smectic[26–28], columnar[29], and cholesteric[30]
phases or the surface-induced paranematic order above the
isotropic-nematic phase transition[31–33] have also been
considered as source for interactions induced by the host
fluid.

There can be another type of two-particle interaction in a
liquid crystal; a short-range repulsion due to the presence of
topological defects situated between the particles. When the
surface anchoring and the resultant elastic distortions in a*Electronic address: fukuda@nanolc.jst.go.jp
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nematic liquid crystal are strong enough, the dispersed par-
ticles can carry topological defects in the surrounding direc-
tor field such as a pointlike defect referred to as a hyperbolic
hedgehog[5,6], a Saturn ring that encircles a particle as the
name implies[9,40], and two surface defects called boojums
[6]. Topological defects have been one of the important sub-
jects of condensed matter physics[41–46] and liquid crystals
have been known as one of the best systems where they can
be observed[46–49]. Topological defects arising in liquid
crystals in response to foreign inclusions provide an interest-
ing problem on its own, and extensive theoretical[23,50–54]
and numerical[33,55–66] studies have been devoted to the
understanding of the profiles of the liquid crystal orientation
and the topological defects close to spherical or cylindrical
inclusions. Poulin and co-workers[5–7,12] argued that the
long-range attraction between particle-hedgehog dipoles
[23,24] and the above-mentioned short-range repulsion due
to topological defects are responsible for the chainlike super-
structure of the dispersed droplets with well-defined interpar-
ticle distances.

The elastic-distortion-mediated particle interactions bring
about various types of superstructures, not only the linear
chains[5–7,12,15] as mentioned above but also anisotropic
clusters[4,8,9], periodic lattices[14,15], cellular structures
[11], and the fingerprint textures that mimic those of choles-
teric liquid crystals[16]. Therefore, a detailed investigation
of the two-particle interactions in a liquid crystal is crucially
important for the understanding of the mechanism underly-
ing the formation of such superstructures. In spite of the
wealth of analytical studies mentioned above that elucidate
the properties of the particle interactions, the validity of the
analytical arguments is somewhat limited because of the in-
trinsic difficulties in the treatment of the elasticity of liquid
crystals, such as the nonlinear nature of the elastic energy or
the presence of topological defects. Most of the previous
analytical studies implicitly or explicitly assume either that
the surface anchoring and the resultant elastic distortions in
the host liquid crystal are weak enough to use a harmonic
form of the elastic energy, or that the interparticle distance is
much larger than the typical particle dimension. Therefore
numerical calculations are inevitable for a detailed investiga-
tion of the two-particle interaction in a liquid crystal, in par-
ticular in the cases where the interparticle distance is small or
where topological defects are present. There have been only
a few numerical investigations for this subject. One of the
first numerical studies was carried out by Stark and co-
workers[33,34], who used a finite-element method together
with a continuum description of the orientational order in
terms of the directorn to discuss the interaction between two
spherical particles in a nematic droplet. Similar studies have
also been performed by Patrício and co-workers[35,36] and
Grollau et al. [37], who focused on the interaction between
circular inclusions in a two-dimensional smectic-C [35] or
nematic [36,37] liquid crystal. Very recently, molecular-
dynamics simulations were carried out to calculate the inter-
action between infinitely long parallel cylinders in a nematic
liquid crystal and the results were compared with those using
a continuum theory[38]. Guzmán argued in a recent paper
[66] that between two particles carrying a Saturn ring, a third
disclination ring appears at short separations, which gives
rise to an effective binding of the particles.

The aim of the present paper is to investigate the interac-
tion between two spherical particles in a uniformly aligned
nematic liquid crystal numerically. To describe the geometry
of the two-particle system, we employ bispherical coordi-
nates[39,67,68], while the previous numerical studies on the
basis of continuum theory used triangular grids to construct
the surfaces of the particles properly[33–36], or simple regu-
lar square grids without taking any special care of the curva-
ture of the particle surfaces[37]. One of the great advantages
of using bispherical coordinates is that the infinite region
outside the two spheres can be mapped onto a finite rectan-
gular region under a simple transformation. Furthermore, the
bispherical coordinate system makes the treatment of the dif-
ferential equations governing the elasticity of the liquid crys-
tal and the boundary conditions both at the particle surfaces
and at infinity much easier, more natural, and less computa-
tionally demanding compared to triangular or regular grids.
Due to the presence of topological defects, whose core size is
much smaller than the particle radii, a numerical investiga-
tion of liquid crystal colloidal dispersions becomes quite dif-
ficult. However, as has already been shown in our previous
studies[39,59–63] and the work of Patrício and co-workers
[35,36], the use of an adaptive mesh refinement scheme en-
ables one to avoid those numerical difficulties. We employ
the Landau–de Gennes theory of a nematic liquid crystal in
terms of the second-rank tensor order parameterQij
[39,48,59–63] that allows one to describe topological defects
without introducing any singularities that are inevitable in
the director description in terms of the unit vectorn. We
focus on the case where two spherical particles are accom-
panied by hyperbolic hedgehogs; a situation which is similar
to the experiments by Poulin and co-workers[5–7,12]. To the
best of our knowledge, the only previous study giving quan-
titative results of the interaction between(three-dimensional)
spherical particles is that of Starket al. [33,34]. However,
their boundary conditions are different from ours since they
imposed radial rather than uniform orientation at the outer
boundary. Other studies[35–38] deal with essentially two-
dimensional systems. Therefore we emphasize that this paper
presents the three-dimensional numerical study of the inter-
action between spherical particles in a uniformly aligned
nematic liquid crystal.

We describe our numerical system in Sec. II. In Sec. III A
we present our results for the dipoles composed of a particle
and a hyperbolic hedgehog in parallel directions, which is
similar to the configuration found in the experiments of Pou-
lin and co-workers[5–7,12]. In Sec. III B we deal with di-
poles taking antiparallel directions with no hedgehogs be-
tween the particles. In the latter case the particles experience
a repulsive interaction. We conclude this paper in Sec. IV.

II. MODEL

A. Order parameter, free energy, and the boundary conditions

For the description of the orientational order of a nematic
liquid crystal, we use a second-rank traceless tensorQij as in
our previous studies[39,59–63] instead of the directorn that
is a unit vector and that was employed in some of the previ-
ous numerical studies concerning nematic emulsions
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[33–35,55,56,65]. We notice that by using the tensor order
parameterQij , we do not have to deal with the cores of
topological defects as singularities in contrast to the director
description. Moreover, the tensor order parameter is consis-
tent with the mesoscopic symmetry of the nematic liquid
crystal, the equivalence of the head and tail(or n and −n),
and therefore can describe all of the topological defects ap-
pearing in a nematic liquid crystal, including those with half-
integer strength.

The free energy of the host nematic liquid crystal in terms
of Qij is written as

F =E
V

drF1

2
ATrQ2 −

1

3
BTrQ3 +

1

4
CsTrQ2d2

+
1

2
L1]kQij]kQijG , s1d

whereV is the volume occupied by the nematic liquid crys-
tal, or the region outside the two particles. The first three
terms represent the bulk energy in terms of the Landau–de
Gennes expansion with TrQ2=QijQji and TrQ3=QijQjkQki.
The indicesi , j , and k denote the Cartesian coordinates
x,y, and z and summations over repeated indices are im-
plied. The coefficientC must be positive forQij to be
finite and well defined. We also notice that whenA,0
and B.0, a uniaxial orientational configurationQij
=Qfninj −s1/3ddi jg minimizes the bulk energy, withn be-
ing a unit vector corresponding to the director andQ.0
being the scalar order parameter representing the strength
of the orientational order. The last term of Eq.s1d is the
elastic energy withL1 being the elastic constant. We adopt
the simplified one-constant form of the elastic energy, i.e.,
another term allowed from symmetry,L2]iQij]kQkj, is not
taken into account.

Since there are many material parameters, it is convenient
in the following discussion to rescale the order parameter as

Qij =sQ̄ij with s=2Î6B/9C. The free energy(1) then reads,

in terms ofQ̄ij ,

F

Cs4 =E
V

drF1

2
tTrQ̄2 −

Î6

4
TrQ̄3 +

1

4
sTrQ̄2d2

+
1

2
jR

2]kQ̄ij]kQ̄ijG , s2d

where t;A/Cs2=27AC/8B2 is the reduced temperature,
and we define the nematic coherence length asjR

;ÎL1/Cs2=Î27L1C/8B2. We notice that the first-order
nematic-isotropic transition occurs att=1/8 and aniso-
tropic phase becomes unstable whent,0. In what fol-

lows we omit the overbar ofQ̄ij unless confusions occur.
In the simulations presented below, we are only interested
in the nematic phase and sett=s3Î6−8d /12,0, where
Qij =Qbulkfninj −s1/3ddi jg with Qbulk=1 minimizes the bulk
energy.

We impose rigid homeotropic anchoring at the surfaces of
two particles and fix the order parameter asQij =Qsfnin j

−s1/3ddi jg, wheren is a unit vector normal to the particle

surfaces andQs is the scalar order parameter at the surfaces,
which we will set equal toQbulk=1. We notice that since the
order parameter at the surfaces is fixed, the particle surfaces
do not contribute to the free energy of the system; therefore
Eq. (2) constitutes the total free energy of the system.

At infinity, we assume uniform alignment along thez axis
and set Qij =Qbulkfei

zej
z−s1/3ddi jg=Qbulkfdizd jz−s1/3ddi jg,

where ez is a unit vector along thez direction. This setup
corresponds to placing particles with rigid homeotropic sur-
face anchoring in a uniformly aligned nematic liquid crystal.

B. Description of the geometry and the numerical grid

We consider the case where two spherical particles with
equal radiiR0 are placed in an infinite nematic medium and
where the centers of the particles lie on thez axis. We denote
the distance between the centers of the particles byDs.2R0d
and the centers of the two particles are located atz= ±D /2.
For the description of the geometry of two nonintersecting
particles, bispherical coordinates have proven quite useful
and practical[39,67,68]. The relation between the usual cy-
lindrical coordinatessr ,z,fd and the bispherical coordinates
sz ,m ,wd is written as

r =
a sin m

coshz − cosm
, z=

a sinh z

coshz − cosm
, f = w, s3d

where a=ÎsD /2d2−R0
2 in our setup. The surfaces of two

spheres are simply represented byz= ±z0 with z0
=cosh−1sD /2R0d. The region outside the spheres is mapped
onto a rectangle in thesz ,md space given by −z0,z,z0

and 0ømøp, wherez=m=0 corresponds to infinity. The
z axis is represented bym=0 or p and the planez=0 in
sz ,md space corresponds toz=0 in real space. The geom-
etry of a typical mesh generated by an equally spaced
mesh in thesz ,md space is illustrated in Fig. 1. Note that
although we deal with simple cases of spherical particles
with equal radii, one can treat more general geometries
such as two spheres with unequal radii, one sphere and a
planar wall, or one sphere inside a larger sphere by appro-
priately choosing the upper and lower bounds ofz.

The grids with equal spacings in them direction give un-
equal spacing on the particle surfaces in the realsr ,zd space
as can be seen in Fig. 1. Therefore, following Ref.[68], we
introduce an additional variableu as a function ofm which

FIG. 1. Illustration of a typical mesh in real space generated by
an equally spaced mesh in thesz ,md space.
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serves as the local polar angle on the right-hand-side sphere
and satisfies

r = R0 sin u, z= 1
2D + R0 cosu s4d

at the surface of the right-hand-side sphere. From Eqs.s3d
and s4d, the relation betweenm andu is straightforward:

u = sin−1S a sin m

R0scoshz0 − cosmdD ,

m = cos−11coshz0 −
a sinh z0

1

2
D + R0 cosu2 . s5d

In our calculations, we first prepare a rectangular mesh com-
posed of 65365 grid points with equal grid spacings in the
sz ,ud space. Since as noted in the Introduction we are inter-
ested in the situations where topological defects are present,
the numerical resolution of the mesh prepared as above may
not be sufficiently high for the description of the topological
defect cores. Therefore, as in our previous studies[39,59–63]
we employ an adaptive mesh refinement scheme, where in
the course of the relaxation of the order parameter described
below, finer grids are generated by bisections in thesz ,ud
space around the topological defect cores with strong spatial
variation of the order parameterQij . In Fig. 2, we show one
of the typical numerical meshes in our calculations corre-
sponding to Fig. 3(b) below. The grids are equally spaced at
the particle surfaces and finer grids are generated around the
cores of the topological defects.

For simplicity, we assume rotational symmetry about thez
axis, which renders our numerical problem an effectively
two-dimensional one. Since thez direction is parallel to the
orientation of the nematic liquid crystal at infinity, as pre-
scribed in Sec. II A, this assumption leads to the situations
where two particles are located along the orientation of the
nematic at infinity. The treatment of the order parameter is
the same as that in our previous study[60,63], where the
order parameter at a certain azimuthal anglef is expressed
by Qijsr ,z,fd=TiksfdTjlsfdQklsr ,z,f=0d, with Tiksfd be-
ing the operator of rotation by an anglef whose explicit
form is given in Ref.[63]. The properties of the order pa-
rameter on the symmetry axis are also essentially the same as
those in Ref.[63]; Qij =0 when i Þ j and Qxx=Qyy. Due to
TrQ=0, Qzz is the only independent component of the order
parameter on the symmetry axis.

C. Evaluation of the free energy

From Eq. (3), it can be shown that the Jacobian
]sx,y,zd /]sz ,m ,fd is equal to a3sin m / scoshz−cosmd3.
Moreover, keeping in mind the choicet=s3Î6−8d /12 in
Sec. II A andQij =Qbulkfninj −s1/3ddi jg with Qbulk=1 mini-
mizing the bulk energy, we find that the free energy density
of a uniform undistorted nematic liquid crystal is −s4
−Î6d /36. Therefore from Eq.(2) the (dimensionless) free
energy of a nematic liquid crystal due to the elastic distortion
by the particles reads

F̄ =
F

Cs4R0
3

= 2pE
−z0

z0

dzE
0

p

dm S a

R0
D3 sin m

scoshz − cosmd3F1

2
tTrQ2

−
Î6

4
TrQ3 +

1

4
TrQ4 +

4 −Î6

36
+

1

2
j̄R

2]̄ kQij ]̄ kQijG , s6d

where the factor 2p is due to the rotational symmetry about

FIG. 2. The numerical grids in the real space in the case of Fig.
3(b) below.

FIG. 3. The orientation profiles of a nematic liquid crystal
shown by gray-scale plots ofQzz

2 for (a) D=5.0R0, (b) D=3.0R0,
and(c) D=2.3R0 in the “parallel-dipole” configurations. Thez axis
is along the horizontal direction and in the black regions, the nem-
atic liquid crystal aligns along thez axis, whileQzz=0 in the white
region.
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the z axis. We have also defined the reduced nematic coher-

ence lengthj̄R=jR/R0 and the spatial derivative]̄k=R0]k.
We evaluate the discretized version of Eq.s6d using the trap-
ezoidal rulef69g generalized to the two-dimensionalsz ,md
space as in our previous studyf63g. For the evaluation of the
first-order derivatives]kQij , see the Appendix.

D. Relaxation of the order parameter

To obtain the equilibrium profiles of the orientational or-
der parameterQij for a given interparticle distanceD, we
first prepare an initial configuration and let it relax via a
simple equation of motion forQij :

]

] t
Qijsr d = − GS dF

dQijsrd
+ ldi jD

= − GStQij −
3Î6

4
QikQkj + TrQ2Qij

− jR
2¹2Qij + ldi jD , s7d

which is referred to as modelA in the notation of Hohenberg
and Halperinf70g. HereG is a kinetic coefficient inversely
proportional to the rotational viscosity andl is a Lagrange
multiplier ensuring TrQ=0. In the bispherical coordinates,
the Laplacian¹2 is given by

¹2 =
scoshz − cosmd

a2 Hscoshz − cosmdF ]2

] z2 +
]2

] m2

+
1

sin2m

]2

] f2G− sinhz
]

] z
−

s1 − coshz cosmd
sin m

]

] m
J .

s8d

The numerical evaluation of the first and second-order de-
rivatives appearing in Eq.s8d is carried out using the same
technique as in our previous study, whose detail is presented
in Ref. f63g.

On the axis of rotational symmetry(z axis, sinm=0), the
only independent component of¹2Qij is ¹2Qzz, because
¹2Qxx=¹2Qyy=−s1/2d¹2Qzz and¹2Qij =0 for i Þ j [63]. For
the calculation of¹2Qzz, the argument presented in Ref.[68]
can be directly used and we obtain

¹2Qzzuz-axis=
scoshz − cosmd

a2 Hscoshz − cosmdF ]2

] z2

+ 2
]2

] m2G − sinhz
]

] z
JQzz. s9d

As the initial condition, we set the order parameter at the
point r to Qijsrd=Qbulkfnisrdnjsrd−s1/3ddi jg with Qbulk=1 in
the bulk andQijsrd=0 close to the initial position of the
topological defect cores. We follow the spirit of Ref.[23]
and choose the directornsrd as nsrd ·ez=cosQsrd, nsrd ·er

=sin Qsrd andnsrd ·ef=0, whereez, er, andef are the unit
vectors in the cylindrical coordinates and

Qsrd = o
i=1,2

X2 tan−1 r

z− zSi
−

1

2
Ftan−1 r − sR0

2/rdidsin udi

z− fzSi + sR0
2/rdidcosudig

+ tan−1 r + sR0
2/rdidsin udi

z− fzSi + sR0
2/rdidcosudig

+ tan−1 r − rdisin udi

z− szSi + rdicosudid

+ tan−1 r + rdisin udi

z− szSi + rdicosudid
G+ e−k/ri

3HS rdi

R0
+

R0

rdi
DFR0

r i
− SR0

r i
D2G r

r i
cosudi+ FS rdi

R0
D2

+ SR0

rdi
D2G

3FSR0

r i
D2

− SR0

r i
D3Grsz− zSid

r i
2 s2cos2udi − 1d+

1

3
FS rdi

R0
D3

+ SR0

rdi
D3GFSR0

r i
D3

− SR0

r i
D4G r

r i
F4Sz− zSi

r i
D2

− 1G
3cosudis4 cos2udi − 3dJC . s10d

Equations10d is just the superposition of the “ansatz” con-
figurations of the disclination rings given in Eq.s33d of Ref.
f23g. zSi =s−1di+1D /2 is thez coordinate of the center of the
ith spherical particle withi =1 or 2, andr i =Îr2+sz−zSid2

is the distance of the pointr from the center of theith
particle. rdi andudi with i =1,2 specify the position of the
two disclination rings and the position of their cores isz
=zSi +rdi cosudi, r=rdi sin udi. We set the variational pa-
rameterk to 0.32 as inRef. f23g. We notice thatudi =0 or
p corresponds to considering a hyperbolic hedgehog point
defect andudi =p /2 a Saturn ring. However, in our previ-

ous studiesf60,71g we found that a hyperbolic hedgehog
defect takes a structure of a small ring rather than a point.
Therefore, keeping this finding in mind, we chooseudi

=s1/90dp or s1−1/90dp depending on the configurations
we want to investigatesnotice that in this paper we do not
consider a Saturn ringd. In most of our numerical calcula-
tions we setrdi =1.22 for i =1,2. WhenDø2.44 and one of
the hedgehog defects is located between the two particles,
we userdi =D /2 for that defect. Finally it should be noted
that although Eq. s10d successfully reproduces the
asymptotic behavior of the director at infinityf23g, it does
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not satisfy the boundary conditions at the particle surfaces
srigid normal anchoringd. This mismatch is reconciled by
the relaxation equations7d.

III. RESULTS AND DISCUSSIONS

We first notice that in all the following simulations the

dimensionless nematic coherence length is set toj̄R=5
310−3. We have checked the stability of a hedgehog con-
figuration in the case of one particle using the same simula-
tion scheme as in our previous study[60,63] and found that

for j̄R=5310−3 the hedgehog configuration is indeed stable
(at least metastable). Using the parameters in Ref.[72], B
.360 kJ m−3 , C.300 kJ m−3, andL1/C.104 Å2, we have

jR.15 nm and the choicej̄R=5310−3 corresponds to tak-
ing R0.3 mm.

A. Parallel dipoles

In Fig. 3 we show several typical orientation profiles for
different interparticle distancesD, where the particles carry a
hyperbolic hedgehog defect and the orientation of the two
dipoles composed of a particle and a hedgehog is parallel.
This configuration is similar to a part of the experimentally
observed chain-like structures in a uniformly aligned nematic
liquid crystal [5–7,12]. In the initial condition presented in
Eq. (10), we chooseudi =s1−1/90dp. For largeD [Fig. 3(a)],
the configurations of a nematic liquid crystal around each
particle are almost independent and uncorrelated; they are
those around an isolated particle, while for smallerD [Figs.
3(b) and 3(c)], deviations of the orientation profiles from
those of two isolated particles are clearly found. Moreover,
in Fig. 3(c) with D=2.3R0 we also observe that the hedgehog
situated between the particles opens up to form a larger ring
(we notice again that the hedgehog defect originally takes the
form of a small ring[60,71]). This behavior may be observed
in an experiment using two optical tweezers and may provide
evidence that the hedgehog indeed possesses the structure of
a ring and not a point.

We plot in Fig. 4 the dimensionless free energy of the

liquid crystal F̄ defined in Eq.(6) as a function of the inter-
particle distanceD. We notice that this free energy is the sum
of the self-energies of two particles(energy of an isolated
particle) and the interaction energy arising from the elastic
distortion of the liquid crystal. The dashed line is 0.003 61
−0.004 86sD /R0d−3, which indicates that when the interpar-
ticle distance is large enough, the interaction is attractive and
its potential energy is proportional to −D−3. This corresponds
to the long-range dipole-dipole interaction discussed theo-
retically [23,24]. We also show in Fig. 5 the log-log plot of

the dimensionless force acting on one particlef̄

=−R0sdF̄/dDd as a function ofD [73]. When −f̄ .0 the
force is attractive and we show in Fig. 5 only data for attrac-
tive forces. The dashed line in Fig. 5 corresponds to
0.0150sD /R0d−4. Therefore Fig. 5 demonstrates that the long-
range attractive force is proportional toD−4, consistent with
the above argument that the interaction potential is propor-
tional toD−3. We also notice that thisD−4 dependence of the
long-range interaction force was observed experimentally
[18].

When D is small, the interaction becomes repulsive and
the potential minimum is found atD.2.46R0. This short-
range repulsion arises from the presence of the hyperbolic
hedgehog defect situated between the particles and its defor-
mation to a larger ring. The balance between the long-range
dipole-dipole attraction and the short-range repulsion due to
the topological defect results in the potential minimum men-
tioned above. This type of interaction potential is the reason
for the chainlike superstructures made up of particles with
well-defined interparticle distances observed experimentally
[5–7,12].

B. Antiparallel dipoles

In this section we discuss the configuration where the two
dipoles take antiparallel directions. We do not consider the
situation where two hedgehogs lie between the two particles,
because it is experimentally observed[19] that such a con-
figuration is quite unstable and one of the particles escapes

FIG. 4. The dimensionless free energy of a nematic liquid crys-

tal F̄ as a function of the distanceD between the centers of the
particles in the case of the “parallel-dipole” configuration. The inset
is a magnified plot aroundD /R0=2.45.

FIG. 5. Log-log plot of the dimensionless forcef̄ as a function
of D in the case of the “parallel-dipole” configuration. The dashed
line corresponds to 0.0150sD /R0d−4. Only the data for the attractive

force s− f̄ .0d are shown.
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from the line along the orientation of the nematic liquid crys-
tal at infinity, just as it is very difficult to let two bar magnets
with antiparallel directions approach each other on one line.
As noted in Sec. II B, in our setup the particles must lie on
the z axis. Therefore, we only deal with the case where no
topological defects lie between the particles. In Fig. 6 we
show several typical orientation profiles for different inter-
particle distancesD. As in the previous case for parallel di-
poles, when the particle distance is large enough, the orien-
tation profiles around each particle are almost the same as
that around an isolated particle[Fig. 6(a)]. The distortions of
the orientation profiles are not strong but observable in the
case of smaller interparticle distances[Figs. 6(b) and 6(c)].

From the theoretical arguments in Refs.[23,24], it is ex-
pected that the two-particle interaction for antiparallel di-
poles is repulsive and that its potential energy is proportional
to D−3. We plot in Fig. 7 the(dimensionless) free energy of

the liquid crystalF̄ as a function of the interparticle distance
D. From Fig. 7 we find that the interaction is indeed repul-
sive, but the dashed line of Fig. 7 is given by 0.003 55
+0.001 51sD /R0d−2. Trials of the fitting of the numerical re-
sults by a functiona+bsD /R0d−n with a andb being fitting
parameters andn being an integer other than 2 were not
successful[whenn is not restricted to an integer, the numeri-
cal data are best fitted by 0.003 55+0.001 79sD /R0d−2.17. We

also plot in Fig. 8 the dimensionless forcef̄ as a function of

D. In this casef̄ .0, which implies that the force is repul-
sive. Although numerical errors are present, the data points
fall well onto the dashed line, 0.003 45sD /R0d−3~D−3, which
also supports the above finding that the interaction potential
is proportional toD−2.

To our knowledge, such a repulsive interaction whose po-
tential is proportional toD−2 has never been found in any
previous analytic and numerical studies concerning the inter-
action between particles in a liquid crystal. As was empha-
sized in the Introduction, almost all of the previous analytic
studies implicitly assume that the interparticle distance is
much larger than the dimension of the particles, therefore our
present result may reveal the limitation of the validity of the
analytic studies in the case of medium interparticle distances.
Although a clear theoretical interpretation of our results is
not available so far, the particles can be regarded as radial
hedgehogs, and the bare repulsion between those two radial
hedgehogs may render the interaction in the present case
stronger than the dipole-dipole one.

We notice that the present case with antiparallel dipoles
has never been discussed in any previous numerical or ex-
perimental studies, so the comparison between our results

FIG. 6. The orientation profiles of a nematic liquid crystal
shown by gray-scale plots ofQzz

2 for (a) D=5.0R0, (b) D=3.0R0,
and (c) D=2.3R0 in the “antiparallel-dipole” configurations.

FIG. 7. The dimensionless free energy of a nematic liquid crys-

tal F̄ as a function of the distanceD between the centers of the
particles in the case of the “antiparallel-dipole” configuration.

FIG. 8. Log-log plot of the dimensionless forcef̄ as a function
of D in the case of the “antiparallel-dipole” configuration. The
dashed line corresponds to 0.003 45sD /R0d−3.
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and previous numerical or experimental ones cannot be done.
Therefore we hope that our results will promote further ex-
periments concerning the interaction between particles in a
nematic liquid crystal. Finally, note that the antiparallel-
dipole configuration possesses a mirror symmetry about the
z=0 plane that lies between the particles. We therefore con-
clude that the interaction of a particle, carrying a hyperbolic
hedgehog, and a planar wall, imposing strong homeotropic
anchoring, should show the same behavior as our results.

IV. CONCLUSION

We numerically investigated the interaction mediated by
the elastic distortions of a nematic liquid crystal between two
spherical particles imposing a rigid homeotropic anchoring
and carrying a hyperbolic hedgehog defect in a uniformly
aligned nematic. We employed the Landau–de Gennes con-
tinuum theory where the orientational order of a nematic
liquid crystal is described in terms of a second-rank tensor
order parameterQij and the topological defects can be
treated without introducing any singularities. In contrast to
similar numerical studies in which triangular grids or regular
square grids were used, we utilized bispherical coordinates
for the description of the geometry of the system containing
two spherical particles. They enabled us to naturally imple-
ment the boundary conditions at the particle surfaces and at
infinity.

We found that when the dipoles composed of a particle
and a hyperbolic hedgehog defect align in parallel directions,
the interaction potential is attractive for large particle sepa-
rationsD and behaves asD−3 until it reaches its minimum at
D.2.46R0 (R0 is the particle radius). The long-range attrac-
tion is of dipolar type and consistent with previous experi-
mental results and those of analytical studies. The potential
minimum arises from the short-range repulsion that is attrib-
uted to the presence of a hyperbolic hedgehog defect and its
elastic distortion to a larger ring. The balance between the

long-range attraction and the short-range repulsion is the rea-
son for the experimentally observed chainlike superstructure
of particles with well-defined interparticle distances in a uni-
formly aligned nematic liquid crystal.

We also investigated the case where the two dipoles take
the antiparallel configuration with no hedgehog defects situ-
ated between the two particles. The particles experience a
repulsive interaction and the dependence of its potential on
the interparticle distance isD−2, in contrast to the “parallel
dipoles” mentioned above or theoretical expectations whose
potential is proportional toD−3. This result may show that
the validity of analytic arguments is somewhat limited be-
cause they assume that the interparticle distance is much
larger than the dimension of the particle. A clear theoretical
argument that explains theD−2 dependence is not available
so far. However, the stronger dependence onD may be at-
tributed to the bare interaction between two particles that
behave as radial hedgehogs. We finally notice that there have
been almost no experimental studies that focused on the re-
pulsive interaction between particles in a nematic liquid
crystal. We therefore hope that our present results will en-
courage further experimental as well as numerical studies
concerning the elastic-distortion-mediated interactions in a
liquid crystal.
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APPENDIX: FIRST-ORDER DERIVATIVES
In this appendix we show how to calculate first-order de-

rivatives necessary for the evaluation of the free energy(6).
From Eq.(3) the calculation of the Jacobi matrix is straight-
forward and noticing thatx=r cosf and y=r sin f, we
have

1
]

] x

]

] y

]

] z

2 =1
−

1

a
sinh z sin m cosf

1

a
scoshz cosm − 1dcosf −

1

r
sin f

−
1

a
sinh z sin m sin f

1

a
scoshz cosm − 1dsin f

1

r
cosf

1

a
s1 − coshz cosmd −

1

a
sinh z sin m 0

21
]

] z

]

] m

]

] f

2 . sA1d

At the axis of rotational symmetry(the z axis), care must
be taken in the use of Eq.(A1) becauser=0 there. There is
no problem in the treatment of] /]z and sinm=0 straightfor-
wardly yields ]Qij /]z=s1/ads1−coshz cosmds] /]zd

(cosm=1 or −1). It can also be shown[63] that when rota-
tional symmetry is assumed,]Qij /]x=]Qij /]y=0 for i j
=xx,yy,zz, and xy at the symmetry axis. As forQxz (the
same argument holds forQyz), we notice that it is regular
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around thez axis and therefore can be expanded in terms of
r as Qxz=Qxz

s0dsz,fd+rQxz
s1dsz,fd+ 1

2r2Qxz
s2dsz,fd+¯ , where

we assume the regularity ofQxz
sid;]iQxz/]ri. Since Qxz

should be independent off at thez axis,]Qxz
s0d /]f=0. There-

fore s1/rd]Qxz/]f is regular at thez axis. Then at thez axis
s−1/rdsin fs]Qxz/]fd and s1/rdcosf] sQxz/]fd can be
safely set to zero atf=0 andf=p /2, respectively. From Eq.
(A1) and sinm=0, we finally obtain

U ] Qxz

] x
U

z-axis
=

1

a
scoshz cosm − 1dU ] Qxz

] m
U

z-axis,f=0
,

U ] Qxz

] y
U

z-axis
=

1

a
scoshz cosm − 1dU ] Qxz

] m
U

z-axis,f=p/2
.

sA2d
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