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Numerical investigation of liquid crystal colloids
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Abstract

We investigate numerically the configuration of a nematic liquid crystal around two spherical particles. For the description of the orientational
order of a nematic liquid crystal, we adopt a Landau–de Gennes continuum theory in terms of a second-rank tensor order parameterQij together
w e nematic–
i conditions.
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ith the use of bispherical coordinates to describe the geometry of the system with two spherical particles. Above but close to th
sotropic transition point, we observe capillary condensation of a nematic liquid crystal between the two particles under appropriate
elow the transition point where liquid crystals possess nematic order, a point-like defect called a hyperbolic hedgehog appear
article when strong normal anchoring is imposed. With the aid of an adaptive mesh refinement scheme to achieve sufficient
esolution to describe topological defects, we present our numerical results showing how the orientation profile of a nematic liquid
istorted when the distance between two particles is small enough.
2004 Elsevier B.V. All rights reserved.
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. Introduction

As a novel class of composite materials, colloidal disper-
ions in anisotropic host fluids such as liquid crystals have
een attracting great interest in technology as well as in fun-
amental science[1–14]. Many of the fascinating properties
f liquid crystal colloidal dispersions are attributed to the
lastic distortion of the host liquid crystal arising from the
nchoring of the mesogenic molecules on the surfaces of the
ispersed particles or droplets. For instance, when the sur-

ace anchoring is strong enough to induce strong elastic de-
ormation of a nematic liquid crystal, topological defects are
ormed close to the particles, which include a point-like de-
ect referred to as a hyperbolic hedgehog[2,3], a Saturn ring
hat surrounds a particle as the name implies[4,8], and two
urface defects known as boojums[3]. Topological defects
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have long been one of the important subjects of conde
matter physics and the formation of topological defects
to foreign inclusions provides an interesting problem c
cerning topological defects.

Another interesting, possibly more important, propert
liquid crystal colloidal dispersions is that the elastic defor
tion of a liquid crystal can mediate interaction between
ticles immersed in it. This novel elastic-distortion-media
interaction, which is of course absent in usual colloidal
persions with isotropic host fluids, has been known to
responsible for various types of superstructures forme
dispersed particles in a nematic liquid crystal, such as
ear chains[2,3,5,9], anisotropic clusters[1,4,5], and periodic
lattices[11]. Cellular structures observed in a liquid crys
colloidal dispersion close to the nematic–isotropic trans
point [7] might be attributed to interactions associated w
paranematic ordering.

It is therefore quite important to elucidate the propertie
the interaction between particles dispersed in a liquid cr
in order to understand what kinds of resultant superstruc
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are formed and under which conditions. There have been
many theoretical studies to calculate the interaction poten-
tial between two particles in a liquid crystal[14–24], which
have shown that it sensitively depends on the symmetry of
the liquid crystal, the geometry of the particles, or the type
of topological defects that the particles carry, and so forth.
However, many of them assumed that the elastic deforma-
tion of the liquid crystal is weak enough and used a harmonic
elastic energy in terms of the order parameter (e.g., distor-
tion of the director from a uniform state in a nematic, and
layer displacement in a smectic). Although such a treatment
enables one to calculate analytic formulas for the interaction
potential, the applicability of the resultant formulas is some-
what limited; they are usually valid when the inter-particle
distance is much larger than the characteristic dimension of
the particles. When the particles are close enough, the use of
the harmonic energy is sometimes no longer valid, and de-
tailed information on the profiles of a liquid crystal will be
necessary to calculate the interaction potential. Then a full
non-linear elastic energy has to be employed, which makes
the analytic treatment almost impossible and therefore one
has to resort to numerical calculations. So far as we know,
there have been only a few studies[25–27] calculating the
interaction between particles in a liquid crystal numerically
without the assumption of the harmonic energy.
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defect are shown. The presence of topological defects whose
core size is much smaller than the size of the particles makes
the numerical calculation quite difficult, but the use of an
adaptive mesh refinement scheme enables us to avoid those
difficulties as we have shown in previous papers dealing with
systems containing one particle[30]. From our numerical re-
sults, we find that when the particles are close enough, the
orientation profile around the particles is significantly differ-
ent from the one when only one particle is present. We make
a brief conclusion inSection 4.

2. Model

2.1. Free energy and the boundary conditions

To describe the orientational order of a nematic liquid
crystal, we use a second-rank tensor order parameterQij [31],
which is symmetric (Qij = Qji) and traceless (TrQ = Qii =
0, where summation over repeated indices is implied). In an
isotropic stateQij = 0 and in a uniaxial nematic oriented
along the directorn, Qij = Q(ninj − (1/3)δij), with Q be-
ing a scalar order parameter representing the strength of the
nematic order. We note that the employment ofQij is con-
sistent with the head-tail symmetry of a nematic (n ↔ −n)
and that the core of a topological defect does not have to be
t
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The aim of this article is to calculate the profiles of a liq
rystal around two particles as a first step towards the u
tanding of the interaction between particles mediated b
iquid crystal host. Instead of microscopic simulations suc

olecular dynamics, we employ numerical simulations b
n a continuum theory in terms of the orientational orde
ameter which is a second-rank tensorQij. The advantag
f using a continuum theory is that only a small numbe
arameters are sufficient for the specification and the co
f the behavior of a liquid crystal. To describe the geom
f the system containing two particles, some of the prev
imilar studies based on a continuum theory[25,26] used
nstructured triangular grids, while Grollau et al.[27] used
egular square or cubic grids without taking any special
f the curvature of the particle surfaces. In this article we
ispherical coordinates[28,29]for the description of the ge
metry with two spherical particles of equal radii. One of
reat advantages of using bispherical coordinates is that
simple transformation, the region outside the two sp

al particles can be mapped onto a rectangular region, w
akes the implementation of the differential equations

he treatment of the boundary conditions at the particle
aces much easier. After presenting the model inSection 2we
ive some of our preliminary results inSection 3. In Section
.1, we present the profiles of the orientational order w

he temperature is above but close to the nematic–isot
ransition point. Under suitable conditions with small in
article distances, a nematic region is shown to appea

ween the particles even when an isotropic state is stab
he bulk. InSection 3.2, the configurations of a nematic liqu
rystal around two particles carrying a hyperbolic hedge
reated as a singularity[30].
We write the free energy density of a liquid crys

n terms ofQij asf {Qij} = (1/2)ATrQ2 − (1/3)BTrQ3 +
1/4)C(TrQ2)2 + (1/2)L1∂kQij∂kQij, whereA,B andC are
he coefficients in the Landau–de Gennes expansion aL1
s the elastic constant associated with the distortion of th
id crystal. Here we adopt a simple form of the elastic en
ith one-constant approximation (L2 = 0). After rescaling

he order parameter asQij = sQ̄ij with s = 2
√

6B/9C, the
ree energy density is rewritten as

¯ = f

Cs4
= 1

2
τTrQ̄2 −

√
6

4
TrQ̄3 + 1

4
TrQ̄4

+1

2
ξ2

R∂kQ̄ij∂kQ̄ij, (1)

here τ ≡ A/Cs2 = 27AC/8B2 is the reduced temper
ure and we define the nematic coherence length asξR ≡
L1/Cs2 =

√
27L1C/8B2. We notice that the nemati

sotropic transition point isτ = 1/8. In what follows we omi
he overline ofQ̄ij unless confusion occurs.

The equilibrium profile of the order parameterQij is ob-
ained by solving the Euler–Lagrange equationδF/δQij = 0
ith F = ∫

drf {Qij} being the total free energy of the s
em. The Euler–Lagrange equation reads

τQij − 3
√

6

4
QikQkj + (TrQ2)Qij

−ξR
2∇2Qij + λδij = 0, (2)

hereλ is the Lagrange multiplier to ensure TrQ = 0.
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Fig. 1. Illustration of typical meshes in a real space.

We impose rigid normal anchoring at the particle sur-
faces so that the order parameter becomesQij = Qs(νiνj −
(1/3)δij), whereQs is some prescribed scalar order param-
eter at the surfaces andν is a unit vector normal to the
particle surfaces. In the case of a liquid crystal above the
nematic–isotropic transition point, we setQij = 0 at infin-
ity. Below the transition point, we assume uniform align-
ment of the nematic liquid crystal at infinity. The direction
of the uniform alignment is taken along thez-direction and
we imposeQij = Qbulk(ezie

z
j − (1/3)δij) = Qbulk(δizδjz −

(1/3)δij), whereQbulk is the scalar order parameter in the
bulk and determined by the Euler–LagrangeEq. (2).

2.2. Description of the geometry using bispherical
coordinates

Bispherical coordinates[28,29]have proven to be useful
and practical in the description of a system composed of two
non-intersecting spheres. The relation between the bispheri-
cal coordinates (ξ, µ, φ) and the usual cylindrical coordinates
(ρ, z, φ) is expressed as

ρ = a sinµ

coshξ − cosµ
, z = a sinhξ

coshξ − cosµ
. (3)

For the case of two spheres with equal radiiR0 whose
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Fig. 2. Profiles of the orientational order of liquid crystals (gray-scale plots
of TrQ2). In the white regions the liquid crystals are in the isotropic state and
in the black region they possess nematic order: (a) absence and (b) presence
of a nematic capillary bridge, respectively.

Qs = 0.7. In Fig. 2(a) two particles carry nematic coronas,
which are almost uncorrelated, whileFig. 2(b) clearly
shows capillary condensation of a nematic liquid crystal,
or a “nematic capillary bridge”. The capillary bridge can
be at least metastable untilD is as large as about 2.6R0.
The comparison of the free energy of those two states can
be carried out and the condition for the preference of the
nematic capillary bridge can be determined. In the case of
Fig. 2 with D = 2.4R0, the presence of a nematic capillary
bridge is energetically more favorable and the absence of a
capillary bridge corresponds to a metastable state. Although
the details of the analysis will be presented in a future article,
we notice that the presence of a nematic capillary bridge
leads to strong attraction between two particles. Intuitively,
the strong attraction can be attributed to the increase in the
interfacial area between the nematic and the isotropic phase
(and therefore the increase in the free energy of a liquid crys-
tal) with the increase of the inter-particle distance (when the
temperature is higher than the transition point, the increase
in the volume of the metastable nematic region also leads to
the increase in the free energy). We notice that the strong at-
tractive force due to the nematic capillary bridge close to the
nematic–isotropic transition point has indeed been observed
in recent experiments using an atomic force microscope[32].
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enters are located atz = ±D/2, ρ = 0 (D > 2R0), we se

=
√

(D/2)2 − R2
0. Then the surfaces of the two spheres

epresented simply byξ = ξ0 ≡ cosh−1(D/2R0). The region
utside the spheres is mapped to−ξ0 < ξ < ξ0 and 0≤ µ ≤
andξ = µ = 0 corresponds to infinity. InFig. 1, we show

ypical meshes in a real space generated from equally s
eshes in the (ξ, µ) space.

. Results

.1. Above and close to the nematic–isotropic transition

Fig. 2 shows typical profiles of the orientational ord
arameter just above the nematic–isotropic transition p
τ = 1/8 + 0). The distance between the centers of
articles isD = 2.4R0, and the nematic coherence len

s ξR = 10−2R0. The surface order parameter is se
.2. Nematic state

As noted in the introduction, when a particle that impo
trong homeotropic anchoring is immersed in a unifor
ligned liquid crystal, a topological defect accompanies
article to preserve the neutrality of the topological char
hen the particle is large enough compared to the size o

efect core, a point-like defect called a hyperbolic hedge
s formed[2,3,14]. Particles carrying a hyperbolic hedgeh
ct as a dipole, which results in a chain-like superstructu
articles[2,3,5,9]. Due to the balance between the long-ra
ttraction of the “dipoles” and the short-range repulsion

o the presence of a topological defect between the part
wo adjacent particles take a well-defined inter-par
istance, which stabilizes the chain-like structure.

In Fig. 3, we show several equilibrium profiles of t
rientational order around two particles carrying a hedge

n a nematic liquid crystal uniformly oriented along
orizontal direction. The distance between the center o
articlesD is fixed to (a) 5.0R0, (b) 3.0R0, and (c) 2.28R0.
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Fig. 3. The profiles of the orientational order of a nematic liquid crystal for (a)D = 5.0R0, (b)D = 3.0R0 and (c)D = 2.28R0 (gray-scale plots ofQ2
zz, where

thez-axis is along the horizontal direction).

The directions of the two “dipoles” are set parallel. This
configuration is similar to a part of the chain-like structure
observed experimentally. We have used the temperature
τ = (3

√
6 − 8)/12< 0, where an isotropic state becomes

unstable and the scalar order parameter in the bulk is
Qbulk = 1. The scalar order parameter at the particle surface
Qs is set equal toQbulk. The nematic coherence length is
taken asξR = 5 × 10−3R0. We notice that the grid spacings
on the left-hand side of the left particle in real space are not
small enough for the description of a topological defect as
can be seen fromFig. 1, so we have used an adaptive mesh
refinement scheme developed in our previous papers[30] to
assign finer grids around the topological defects.

In Fig. 3(a) with D = 5.0R0, the orientation profiles
around each particle are almost independent of each other,
while in Fig. 3(b) with smallerD (3.0R0), slight deforma-
tions of the orientation profiles from that around two isolated
particles are found. When the inter-particle distance is suf-
ficiently small (Fig. 3(c), withD = 2.28R0), the hyperbolic
hedgehog between two particles becomes unstable and opens
up to a larger ring (we notice that a hyperbolic hedgehog is
intrinsically made up of a small ring[30,33]). The result-
ing strong elastic deformations lead to a strong repulsion be-
tween the particles. The detailed analysis of the interaction
energy between two particles in this case will be presented
e
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a situation where two particles are immersed in a uniformly
aligned nematic liquid crystal and each particle carries a hy-
perbolic hedgehog defect. When the particles are far apart,
their orientation profiles are almost independent of each other
and similar to that around one isolated particle. As the inter-
particle distance becomes smaller, strong elastic distortions
from the long-distance profiles are observed. The hedgehog
defect situated between the two particles eventually becomes
unstable and opens up to form a larger ring. In this article
we have restricted ourselves to the presentation of the con-
figurations of a liquid crystal around two particles. The in-
vestigation of the interaction energy between two particles is
possible and the results will be presented in future articles.
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