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The role of liquid films for light transport in dry foams
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Abstract. – We study the role of liquid films for light transport in dry foams based on
ray optics. The foams are modelled by two-dimensional Voronoi tessellations with varying
degree of disorder. We perform extensive simulations to determine the diffusive limit of light
for two models. In model I, we choose a constant intensity reflectance r to explore the effect
of disorder. We show that the honeycomb structure sets the right order of magnitude for
the diffusion constant D by providing a master curve for D(r), whereas disorder reveals itself
in a fine structure. In model II, the reflectance for thin films as determined by Fresnel’s
formulae is chosen as well as some disorder in the film thickness. We argue that this model
reproduces experimental features and the right order of magnitude for the diffusion constant.
This suggests that the liquids films in combination with ray optics are relevant for explaining
photon diffusion in foams.

Introduction. – Many objects in nature, e.g., conventional colloidal suspensions or thick
aligned nematic liquid crystals, are visibly opaque. In such turbid samples, each photon is
scattered many times before exiting the material. Therefore, the photon can be considered
as a random walker which ultimately leads to a diffusive transport of light intensity [1–3].
The recently developed technique of diffusing-wave spectroscopy (DWS) [4] exploits this dif-
fusive nature of light transport to provide information about the static and dynamic properties
of an opaque system.

Recent experiments have applied diffusing-wave spectroscopy to cellular structures like
foams which consist of air bubbles separated by liquid films [5, 6]. This suggests that the
model for the photon transport based on the random walk picture is still valid. However, there
is a debate in the literature about the main mechanism underlying the random walk [6]. A
relatively dry foam consists of cells separated by thin liquid films. Three of them meet in the
so-called Plateau borders which then define tetrahedral vertices [7]. One suggestion is that
light scattering from the Plateau borders [6,8] or vertices is mainly responsible for the random
walk. However, experiments seem to imply that scattering from Plateau borders is not the only
or most significant mechanism [6,9]. On the other hand, since the cells are much larger than
the wavelength of light, one can employ ray optics and follow a light beam or photon as it is
reflected by the liquid films with a probability r called the intensity reflectance. This naturally
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Fig. 1 – Various disordered Voronoi foams. From left to right, the magnitude h of the displacement
vector is 0.3, 0.5, 0.6, 2 (in units of the edge length of the initial honeycomb structure) and the
disorder in the foams is characterized by the measures (µ2, η2).

leads to a random walk of the photons in space [10]. In connection with this ray optics picture,
recent experiments and simulations show photon channelling in the Plateau borders [9].

Here we present a study of the second mechanism based on ray optics. In a previous paper,
we have already implemented it for the simplest model of a two-dimensional foam, the regular
honeycomb structure, using a constant intensity reflectance r [10]. However, the honeycomb
structure is highly idealistic. Therefore, in this letter, we extend our studies towards real dry
foams in two steps. In a first model, we introduce topological and geometrical disorder based
on a Voronoi foam model [11] to investigate the influence of disorder. In a second model, we use
the Fresnel formulas to implement the intensity reflectance r with its significant dependence
on the incident angle and the film thickness. In addition, disorder in the film thickness is
considered. We find that our approach, which combines ray optics and a realistic model for r,
reproduces experimental features and the right order of magnitude for the diffusion constant.

Voronoi foam. – As the simplest model of a two-dimensional disordered dry foam, we
choose the Voronoi tessellation [11, 12]. For an arbitrary distribution of seed points in a
simulation box, Voronoi polygons are constructed in complete analogy to the Wigner-Seitz
cells for periodic arrangements of lattice sites. We start with a triangular lattice of seed points,
which gives the honeycomb structure, and then systematically introduce disorder by shifting
the seed points in randomly chosen directions, whereas the magnitude h of the displacement
vector is kept constant. Figure 1 shows typical Voronoi foams with h increasing from left
to right which apparently increases the disorder. All our Voronoi tessellations are produced
by the software Triangle [13]. They have approximately 2870 cells and 8600 edges in the
simulation box, a small fraction of which is shown in fig. 1. To simulate photon diffusion in
these tessellations, periodic boundary conditions are used.

We use two measures to quantify the disorder in the foam. First, the number of sides
of a cell s is a random variable. From Euler’s theorem applied to a polygonal tessellation,
it follows that 〈s〉 = 6, where 〈. . .〉 denotes averaging over all cells [11]. We use the second
moment of the edge distribution, µ2 = 〈(s − 6)2〉, to characterize the topological disorder of
the foam [11], i.e., the deviation from hexagons. Secondly, the length l of an edge is another
natural random variable. We find that in our samples the average edge length 〈l〉 deviates only
slightly from the initial value l0 of the honeycomb structure. However, the second moment
η2 = 〈(l − 〈l〉)2〉/〈l〉2 exhibits considerable variations. We use it to characterize the geometric
disorder of the foam. Both measures for disorder are indicated in fig. 1 as (µ2, η2). Note first
that the last Voronoi foam is close to a Poisson foam [(µ2, η2) = (1.781, 0.416)], which is
considered as a complete spatial random pattern and which, in principle, allows the analytical
evaluation of the moments of various distribution functions [12]. Secondly, in experiments of
the temporal evolution of 2D soap froth, Stavans and Glazier found a stationary scaling regime
with µ2 = 1.4 ± 0.1 [14] which agrees with one of our disordered Voronoi foams used below.
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Fig. 2 – The diffusion constant (in units of average edge length 〈l〉 times light velocity c) as a function
of intensity reflectance r, for various disordered foams. Monte Carlo simulation results and DH(r)
are denoted, respectively, by points and the full line.

Fig. 3 – The diffusion constant D(r) plotted relative to DH(r) as a function of intensity reflectance
r, for various disordered foams as indicated in the legend of fig. 2.

In the following we model the photon paths in a Voronoi tessellation as a random walk with
rules motivated by ray optics, i.e., an incoming light beam is reflected from an edge with a
probability r or it traverses the edge with a probability t = 1−r. This constitutes a persistent
random walk since the new direction chosen by the photon depends on the direction of the
previous step [15,16]. Persistent random walks are employed in turbulent diffusion [17], poly-
mers [18], diffusion in solids [19], and in general transport mechanisms [20]. Our work is also
related to transport processes in disordered Voronoi networks [21]. We performed extensive nu-
merical simulations, whose details are explained in ref. [10], to mimic the random walk in var-
ious disordered samples and to determine the diffusion constants for the following two models.

Model I. – Here we assume that the edges of the Voronoi cells have a constant re-
flectance r. In fig. 2 we plot the diffusion constant as a function of r for various disor-
dered Voronoi foams, as indicated in the legend, and compare it to the diffusion constant
DH(r) = 1−r

2r 〈l〉c of the unperturbed honeycomb structure with an edge length 〈l〉 and an
injection angle of 60◦ relative to one edge [10]. Remarkably, all the diffusion constants of
the disordered samples are similar to DH(r), which therefore provides a master curve. So
topological and geometrical disorder have no strong effect on the diffusion constants and the
honeycomb structure gives the right order of magnitude. We increase the resolution by plot-
ting D(r)/DH(r) vs. r in fig. 3. For the honeycomb structure such a plot reveals a variation
of the diffusion constant with the injection angle, as demonstrated in fig. 5 of ref. [10]. Even
for the slightest disorder, all the curves for different injection angles collaps on a single curve,
which is shown in fig. 3. However, it is surprising that the diffusion constant still deviates
from the usual (1 − r)/r law (as seen in the honeycomb structure), since it contains an addi-
tional factor linear in r, as fig. 3 clearly reveals. So features of the honeycomb structure are
still preserved. Furthermore, fig. 3 shows that the linear correction of the diffusion constant
significantly depends on the different disordered samples. So the diffusion constant is sensitive
to the amount of disorder in the Voronoi foam. We tried to understand this “fine structure”
within an effective cage model where we assumed that the photons move from one cell to
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Fig. 4 – Intensity reflectance as a function of angle of incidence i for various film thicknesses d/λ as
given by eq. (1).

Fig. 5 – Angular averaged reflectance rav =
2
π

∫
r(i)di as a function of d/λ.

the other during transmission and that during reflection they just stay at their positions and
change their direction according to some probability function. We determined the diffusion
constant for this model analytically by setting up the appropriate master equation. We in-
deed find, apart from the (1 − r)/r law, an additional factor linear in r. However, the slope
is negative and the offset is larger than 1, just contrary to what we find in fig. 3. Our current
guess is that the features in fig. 3 depend on local correlations within the Voronoi foam which
are hard to describe in an effective random walk model.

Model II. – In the second model, we consider edges with a finite thickness d and apply the
reflectance r of a thin film of refractive index n that now depends on the angle of incidence i
(measured with respect to the normal of the film). Summing up all possible multiple refraction
paths in the film and applying Fresnel’s formulae to each refraction event, one obtains, in the
case of the electric field perpendicular to the plane of incidence [22],

r(i)=
2r2

12[1 − cos(i0)]
1 + r4

12 − 2r2
12 cos(i0)

, r12 =
cos(i) −

√
n2 − sin2(i)

cos(i) +
√

n2 − sin2(i)
, i0 =4π

d

λ

√
n2 − sin2(i). (1)

Figure 4 illustrates r as a function of the angle i for different thicknesses d/λ and the refractive
index n = 1.34 of water. For films as thin as a common black film (d ≈ 30 nm or d/λ = 0.06
for λ = 500 nm) [7], the reflectance is very small but sharply increases to 1 close to grazing
incidence (i = π/2). Increasing the thickness d, oscillations in r(i) start to enter at d =
λ/(2n) due to the constructive and destructive interferences of the multiple refraction paths.
We numerically determined an angular averaged reflectivity rav = 2

π

∫
r(i)di to illustrate the

overall effect of d. In fig. 5, rav is plotted as a function of d/λ. The reflectance for electric
fields parallel to the plane of incidence shows the same qualitative behavior. Especially, in the
angular averaged reflectivity the characteristic minima are situated at approximately the same
values d/λ as in fig. 5, although the absolute values are by a factor of 2 smaller. Therefore,
we only used eqs. (1) in simulating the photons’ random walk. Furthermore, in our model
we introduce some additional randomness in the thickness of the film d assuming that it is



MF. Miri et al.: The role of liquid films for light transport etc. 571

1

10

0.1 1

D
(d

av
)/

(<
l>

c)

dav/λ

dw/dav=0.1

dw/dav=0.3

dw/dav=0.5

dw/dav=0.7

dw/dav=0.9

Fig. 6

10

0.1 1

D
(d

av
)/

(<
l>

c)

dav/λ

(µ2,η2 )  

(0.04, 0.09) 

(0.49,0.22) 

(0.85,0.28) 

(1.40,0.36) 

(1.64,0.37) 

(1.81,0.40) 

Fig. 7

Fig. 6 – The diffusion constant as a function of dav/λ for the disordered sample (µ2, η2) = (1.81, 0.4)
with various thickness distributions. Other disordered samples show the same behavior.

Fig. 7 – The diffusion constant D(dav) as a function of dav/λ for various disordered foams with
dw/dav = 0.5. Other thickness distributions show the same behavior.

uniformly distributed in [dav − dw, dav + dw], where dav denotes the average thickness and dw

the width of the distribution. We will comment below on this assumption.
In fig. 6, we plot the diffusion constant D in units of 〈l〉c as a function of dav/λ for the most

disordered Voronoi foam but different dw. For small disorder in the film thickness (dw/dav =
0.1), D is clearly oscillating when dav/λ decreases from 2. It then reaches a pronounced
minimum at around dav/λ = 0.23 and finally monotonically increases. This behavior is in
complete agreement with the plot of rav in fig. 5. Disorder in the film thickness decreases the
oscillations to an approximately constant D, the minimum nearly vanishes, and the monotonic
increase in D for small dav/λ does not show a significant dependence on dw. In fig. 7 we
choose dw/dav = 0.5 and plot D as a function of dav/λ for different disordered Voronoi foams.
Interestingly, the curves have all the same shape but, for increasing disorder in the foams,
the first three samples are shifted downward, whereas the three most disordered samples are
not distinguishable in the present resolution. So again, disorder shows itself in a quantitative
effect on D rather than a qualitative one.

An important parameter for foams is the volume fraction ε of the liquid phase. The ques-
tion of how the film thickness dav depends on ε is controversal in the literature. On the one
hand, it is assumed that dav is set by the interfacial forces, i.e., independent of ε. However,
with dav ≈ 30 nm (common black film) [23, 24] and dav ≈ 100 nm [25] different values are
stated. On the other hand, a linear relationship dav ∝ ε is reported with film thicknesses up
to 2000 nm [26]. The last reference might also justify our assumption that the film thickness in
a real foam shows some distribution about an average value. We already showed that such a
distribution decreases the oscillations of D when dav/λ is changed. These missing oscillations
were used in ref. [6] to argue against the importance of the films for the photon diffusion.
Here we present a mechanism to reduce them. However, even for vanishing dw, oscillations
do not occur for dav/λ < 0.2, as demonstrated in fig. 6. In ref. [6], it was also observed
that the diffusion constant hardly depends on the wavelength of light in the visible spectrum.
The constant D for dav/λ > 0.3 for the most disordered foams in fig. 6 reproduces this fact.
However, for dav/λ < 0.2, we predict an increase of D with decreasing λ−1. In ref. [6] the
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dependence on λ was not reported for very dry foams, so it is not clear in which regime of
the averaged film thickness the measurements were performed. Therefore, an experimental
confirmation of our prediction would be a strong argument for the approach presented here.

The diffusion constant D is linked to the transport mean free path l∗ via D = cl∗/m, where
m is the spatial dimension. Detailed studies of l∗/a as a function of ε, where a is the average
bubble diameter, were undertaken by Durian and collaborators [6]. If we choose a = 2〈l〉 for
the Voronoi foams, as suggested by a hexagon, we can directly compare our results to fig. 3
in ref. [6]. There, l∗/a increases from 2 to 20 for decreasing ε, whereas in our case l∗/a varies
between 2 and 12 (for dav ≈ 30 nm). This quantitative agreement for l∗/a serves as a strong
argument for our approach concentrating on the films and ray optics. If it were of minor
importance in the photon diffusion, it would give much larger transport mean free paths. Of
course, our studies were done in 2D. However, we speculate that they also apply to the three-
dimensional foams of ref. [6]. Although this has to be confirmed by appropriate simulations,
we already have hints for this speculation. The l∗ of one-dimensional photon paths in the
honeycomb lattice is by a factor of

√
3/2 smaller than the l∗ of two-dimensional paths with

an injection angle of 60◦ [10]. Such a factor would not spoil our quantitative agreement.
Furthermore, the steady increase in l∗/a observed in ref. [6] for decreasing ε in dry foams is
directly comparable to the behavior in fig. 6 for dav/λ < 0.2.

Finally, we comment on the very appealing idea of photon channeling in foams as reported
in ref. [9]. We implicitly include photon paths which preferentially move in the “liquid phase”
since the reflectance r in eq. (1) includes multiple refraction paths. However, there is an impor-
tant difference; whereas in our treatment the multiple refraction paths interfere constructively
and destructively, this effect seems to be not taken into account in the simulations of ref. [9].

Conclusion. – We have presented a detailed study of the role of films for light transport in
disordered 2D Voronoi foams. We show that the amount of disorder has a quantitative effect on
the diffusion constant rather than a qualitative one which might depend on local correlations
within the Voronoi foam. We speculate that the results within model II can be directly
compared to measurements of the transport mean free path in 3D. Based on a quantitative
agreement, we then argue that the liquid films play a significant role for explaining light
diffusion in foams. This reasonable assumption, however, needs a confirmation by simulations
using 3D model foams. To test our results within model II, measurements of the transport
mean free path as a function of the wavelength of light for very dry foams would be helpful.

So far, we cannot exclude the importance of light scattering from Plateau borders or
vertices for the diffusive behavior of light. A simple estimate where the vertices in 2D with
a radius of curvature R � 〈l〉 are viewed as isolated scatterers leads to a transport mean
free path of l∗S ∝ 〈l〉2/R. This can become comparable to l∗/2〈l〉 ≈ 12, which we find within
model II in the common black-film limit. To clarify this question in future, we aim at a model
which combines both mechanisms. Also, an extension of our ray-optics approach to wet foams
and, as already stated, to 3D is envisaged. Clearly, we are progressing towards a detailed
understanding of the mechanisms underlying light diffusion in foams.

∗ ∗ ∗

We would like to thank S. Cohen-Addad, D. J. Durian, R. Höhler, H. Larralde,
G. Maret, N. Rivier, S. Skipetrov, R. Turner, D. Weaire, and D. Weitz for fruitful
discussions, and J. R. Shewchuk for his freely available software Triangle. We also thank
Iran’s Ministry of Science, Research and Technology for support of the parallel computing
facilities at IASBS under Grant No. 1026B (503495). HS acknowledges financial support



MF. Miri et al.: The role of liquid films for light transport etc. 573

from the Deutsche Forschungsgemeinschaft under Grant No. Sta 352/5-1. MFM and HS
thank the International Graduate College “Soft Matter” at the University of Konstanz for
financial support.

REFERENCES

[1] Sheng P. (Editor), Scattering and Localization of Classical Waves in Random Media (World
Scientific, Singapore) 1990; Sheng P., Introduction to Wave Scattering, Localization, and Meso-
scopic Phenomena (Academic Press, San Diego) 1995.

[2] Maret G., in Mesoscopic Quantum Physics, Les Houches, Session LXI, edited by Akkermans
E., Montambaux G., Pichard J.-L. and Zinn-Justin J. (North-Holland, Amsterdam) 1995.

[3] van Tiggelen B. and Stark H., Rev. Mod. Phys., 72 (2000) 1017.
[4] Maret G. and Wolf P. E., Z. Phys. B, 65 (1987) 409; Pine D. J., Weitz D. A., Chaikin

P. M. and Herbolzheimer E., Phys. Rev. Lett., 60 (1988) 1134; Maret G., Current Opin.
Colloid Interface Sci., 2 (1997) 251.

[5] Durian D. J., Weitz D. A. and Pine D. J., Science, 252 (1991) 686; Phys. Rev. A, 44
(1991) R7902; Earnshaw J. C. and Jaafar A. H., Phys. Rev. E, 49 (1994) 5408; Höhler R.,
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