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Tetravalent colloids by nematic wetting
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PACS. 82.70.Dd – Colloids.
PACS. 61.30.Hn – Surface phenomena: alignment, anchoring, anchoring transitions, surface-

induced layering, surface-induced ordering, wetting, prewetting transitions,
and wetting transitions.

PACS. 61.30.Dk – Continuum models and theories of liquid crystal structure.

Abstract. – In an elegant paper, Nelson suggested a method to produce tetravalent col-
loids based on a tetrahedral configuration created on the surface of a spherical particle. It
emerges from a two-dimensional nematic liquid crystal placed on a sphere due to the presence
of four 1/2 disclinations, i.e., topological defects in the orientational order (Nelson D. R.,
Nano Lett., 2 (2002) 1125). In this paper we show that such a tetrahedral configuration also
occurs in the wetting layers which form around spheres dispersed in a liquid crystal above
the nematic-isotropic phase transition. Nematic wetting therefore offers an alternative route
towards tetravalent colloids.

Recently, Nelson proposed a method by which tetravalent colloids could be produced [1].
These micron-sized particles would have four chemical linkers or DNA strands symmetrically
attached to their surfaces. Similar to, e.g., carbon, silicon and germanium atoms with their
sp3 hybridized chemical bonds, the tetravalent colloids could then arrange into, e.g., a col-
loidal crystal with a diamond lattice structure which is known to possess a large photonic
band gap [2].

To create the attachment sites for the chemical linkers, Nelson considered the two-dimen-
sional nematic liquid crystal phase on the particle surface realized by a monolayer of elongated
constituents such as gemini lipids [3], ABA triblock copolymers [4] or nanorods [5]. One could
first think that the rodlike particles on a sphere create Mermin’s boojums [6], i.e., point defects
with topological charge 1 situated at the north and south pole of a sphere as illustrated in
fig. 1a). The lines indicate the director field. A vector order parameter would indeed create
such a configuration. The nematic order, however, is described by an axis in space which
allows the boojums to split up into a pair of disclinations with charge 1/2. Lubensky and
Prost showed that the ground state of a 2D nematic texture on a sphere consists of four 1/2
disclinations situated at the vertices of a tetrahedron [7]. Figure 1b) tries to illustrate such
a configuration with tetrahedral symmetry in the angular space of spherical coordinates, i.e.,
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Fig. 1 – Different configurations of a nematic liquid crystal on a sphere. The pictures apply to both
a pure two-dimensional nematic and to biaxial nematic wetting layers. a) Boojum configuration with
two +1 disclinations at the north and south pole. The lines indicate the director field. b) Tetrahedral
configuration visualized in the angular space of spherical coordinates. The orientational order in the
sphere is indicated by rectangles. Four +1/2 disclinations (see dots) are located on the vertices of a
tetrahedron. As a reference, the square in the upper left corner symbolizes a fully isotropic order of
the molecular axis.

polar angle θ vs. azimuthal angle φ. For the moment, let the rectangles symbolize the nematic
director. To visualize the boojum configuration in this representation, all the local directors
would point along the vertical (lines of longitude). Squares situated on the θ = 0, π line (north
and south pole) would indicate the isotropic order in the core of the boojums. To arrive at
the tetrahedral configuration, the boojums split up into a total of four 1/2 disclinations which
move away from the north and south pole as indicated by the dots in fig. 1b). If one is able to
attach chemical linkers selectively to the core of the disclinations, then a tetravalent colloidal
chemistry can be realized [1].

Does the tetrahedral configuration survive when the colloid is suspended in the nematic
phase of a three-dimensional liquid crystal? The 1/2 disclinations would extend as lines into
the solvent. For topological reasons, they have to end either on neighboring particles or at
the boundaries of the system. However, the resulting network of defect lines carries a lot of
free energy. It can be greatly reduced if the particles realize the boojum configuration. The
corresponding +1 defect lines in the bulk nematic phase are not stable and “escape into the
third dimension” [8]. This is indeed observed in nematic emulsions [9].

We have recently looked at nematic wetting transitions and capillary condensation in
connection with colloids suspended in a liquid-crystal solvent above the nematic-isotropic
phase transition [10]. So the interesting question arises if the tetrahedral configuration occurs
in nematic wetting layers which surround colloidal particles. This would then suggest an
alternative route towards tetravalent colloids. In answering the question, one first needs to
establish orientational order close to the colloid with a preferred axis parallel to its surface.
One possibility to achieve such a preferred axis is to favor planar ordering of the liquid-crystal
molecules at the surface with an isotropic distribution of their axes in the surface [11]. This
uniaxial oblate order is, however, energetically disfavored in the bulk, since close to the phase
transition the molecules already have a tendency to align parallel to each other, i.e. to assume
uniaxial prolate order. As a compromise, biaxial order close to the bounding surfaces occurs
and introduces a preferred axis as required. The phase transition from uniaxial oblate to
biaxial surface ordering is well studied in the literature for planar geometry [12–14]. In the
following, we readdress this problem to set the stage for the spherical geometry. For the latter
we then show that close to the nematic-isotropic phase transition, the biaxial ordering indeed
leads to the tetrahedral configuration as in the two-dimensional case. In addition, we find
that the transition from oblate ordering to the tetrahedral texture occurs via the boojum
configuration which possesses a narrow stability region only.
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To quantify the surface-induced orientational order, we use a traceless and symmetric
second-rank tensor Qij , also called alignment tensor. We perform our analysis with the
help of the Landau-Ginzburg-de Gennes free energy density in the bulk [15], f(Qij) =
1
2a0(T − T ∗)QijQij − bQijQjkQki + c(QijQij)2 + 1

2L1(Qij,k)2 + 1
2L2(Qij,j)2, where summa-

tion over repeated indices is implied and the symbol k means spatial derivative with respect
to xk. The first three terms describe the nematic-isotropic phase transition; a0 and c are
positive constants and T ∗ denotes the supercooling temperature of the isotropic phase. The
fourth and fifth terms penalize any non-uniform orientational order. Since we are inter-
ested in the basic features of our system, we always choose L1 = L2. The anchoring of
the molecules to a bounding surface is quantified by the Nobili-Durand free energy density,
fS(Qij) = W

2 (Qij − Q
(0)
ij )2, where W is the anchoring strength and Q

(0)
ij the preferred order

parameter at the surface [16]. The number of parameters is reduced by using a rescaled order
parameter µij = Qij/s [s = b/(

√
6c)] and temperature τ = 12ca0(T − T ∗)/b2. Furthermore,

all lengths are given in terms of the particle radius a (r̄ = r/a) and the unit of the free energy
is ∆fa3 = b4a3/(36c3). We also introduce the nematic coherence length at the nematic-
isotropic phase transition, ξr = (12cL1/b

2)1/2, and define the reduced anchoring strength as
γ = 6cW/(b2ξr) so that the reduced free energy becomes

F [µij(r̄)] =
∫

d3r̄

(
1
4
τµijµij−

√
6µijµjkµkl+(µijµij)2+
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+

+
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∫
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(
µij − µ

(0)
ij

)2

. (1)

Note that in the planar case, we choose a = ξr as the unit length. Typical values for the
nematic compound 5CB are ∆f = 8 · 105 erg/cm3, ξr = 10nm, and the temperature interval
∆τ = 1 corresponds to 1.12K.

A uniaxial order parameter µij = 3
2S(ninj − δij/3), where n is the nematic director and

δij the Kronecker symbol, minimizes the first three terms on the right-hand side of eq. (1).
The bulk nematic-isotropic phase transition from S = 0 to Sb =

√
6/4 occurs at τc = 1, and

τ † = 9/8 is the superheating temperature of the nematic phase. The bulk exhibits prolate
order since Sb > 0, i.e., the rodlike molecules align along a common axis. In the following,
we assume that bounding surfaces favor oblate order. The preferred order parameter at the
surface therefore assumes the form µ

(0)
ij = 3

2S0(ν̂iν̂j − δij/3) with S0 < 0. In general, the
order parameter can be biaxial. We visualize it by adding a term proportional to δij and by
calculating its eigenvectors and eigenvalues whose directions and magnitudes then define the
edges of a cuboid. We find that in the planar or spherical geometry one eigenvector always
points along the surface normal or the radial direction, respectively. So in fig. 1b) we only
see one face of the cuboid. To test for the biaxiality of µij , we introduce the measure [17]
B = 1 − 6(µijµjkµki)2/(µijµij)3, which is zero for uniaxial tensors and assumes a maximal
value of one. An averaged degree of biaxiality is defined as B̄ =

∫
d3r̄µijµijB/

∫
d3r̄µijµij .

It weights the local B with the degree of orientational order given by µijµij such that for
µij → 0 unphysically high local biaxialities do not contribute to B̄.

Stable orientational textures correspond to a minimum of the free energy functional (1). Its
variation gives Euler-Lagrange equations for the five independent components of µij(r̄). They
are discretized and then solved numerically by the standard Newton-Gauss-Seidel relaxation
method using appropriate starting configurations [18]. The planar geometry is just a one-
dimensional problem with the bounding surface at z̄ = 0. To deal with the infinite half-space,
we introduced a new coordinate ρ = exp[−z̄]. Since close to the bulk phase transition the
biaxial wetting layer exhibits complete wetting [13], we also used an adaptive grid to resolve
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Fig. 2 – Phase diagram for the planar geometry in terms of temperature τ and reduced anchoring
strength γ; the parameter of the curves is the preferred surface order parameter S0. First- and second-
order phase transitions between uniaxial oblate and biaxial wetting layers are indicated by solid and
dashed lines, respectively. The dot means tricritical point.

the interface between isotropic and orientational order. Oblate and biaxial wetting layers were
distinguished by the biaxiality parameter B at the surface. The wetting layers close to a sphere
were determined in a spherical coordinate system using the local coordinate basis to define
the alignment tensor µij(r̄). We replaced the radial coordinate r̄ by ρ = exp[−(r̄ − 1)a/ξr]
to account for the infinite space around the sphere. The Euler-Lagrange equations were
formulated with the help of differential geometry. Phase transitions between different wetting
layers were monitored by the averaged biaxiality B̄ and by the behavior of the free energy
which we calculated numerically by applying Simpson’s integration rule to eq. (1).

We add some comments about the possible orientational textures close to a sphere. It has
already been noted that one eigenvector of the tensor order parameter always points along the
radial direction. From the remaining eigenvectors, we take the one with the largest eigenvalue
as a director. Close to the particle it can then form the splay-dominated boojum of fig. 1a)
or the bend -dominated version where the director always points along the lines of latitude
of the sphere. Within our numerical accuracy, we observe that both configurations have the
same free energy. This is due to the fact that in the Landau-de Gennes theory splay and
bend deformations are energetically degenerate. The same applies to the bend-dominated
tetrahedral configuration of fig. 1b) and its splay-dominated counterpart which follows from
fig. 1b) by rotating all rectangles by 90◦. Note that fig. 1b) illustrates the orientational order
a distance of 0.05a away from the particle surface. We found that around this distance the
biaxiality of the orientational order is the largest. Topological defects in biaxial nematics are
more complex than in the uniaxial case [19]. However, since one eigenvector always points
along the radial direction, we do not have to worry about these complications and can basically
work with the director introduced above to identify the defects.

Before continuing the discussion of the spherical case, we summarize our results for the
planar geometry in fig. 2. We show a phase diagram in terms of temperature τ vs. reduced
anchoring strength γ, the preferred surface order parameter S0 is fixed for each transition line.
Above S0 ≈ −1, only the uniaxial oblate phase exists. For smaller S0, a biaxial phase appears
at temperatures close to the bulk phase transition (τ = 1) and for sufficiently large anchoring
strength. Decreasing S0 widens the existence region of the biaxial phase. The transition
from the uniaxial oblate to the biaxial wetting layer is either of first (solid line) or second
(dashed line) order. The transition lines meet in a tricritical point (dot). For large γ, the
lines approach a constant temperature τ > 1 (note the logarithmic scale for γ). Our results
on a single transition line agree with earlier findings where a one-parameter surface potential



M. Huber et al.: Tetravalent colloids by nematic wetting 139

tetra- 
hedral

uniaxial
oblate

S0

τ
γ

boojum

temperature τ

S0=-1.2
tetra- 
hedral

=-1.65=-1.4
uniaxial
oblate

an
ch

or
in

g 
st

re
ng

th
γ

boojum

a=300nm b)a)

1 1.04 1.08 1.12 1.16 1.2 0.1
1

10

-3.5
-3

-2.5
-2

-1.5
-1

1 1.04 1.08 1.12 1.16        1.2
0.1

1

10

Fig. 3 – a) Three-dimensional phase diagram of the different wetting layers for 300 nm particles.
Surface with solid grid lines: transition uniaxial oblate-boojum, surface with dashed grid lines (hardly
visible): first-order transition boojum-tetrahedral. The solid line on the upper surface is a tricritical
line. It separates a first-order (smaller γ) from a second-order (larger γ) transition. Note the very
narrow existence region of the boojum. b) Contour plots of the three-dimensional phase diagram for
various S0.

with just a surface ordering field was used [13]. With our more realistic surface potential, we
show in addition that the biaxial wetting layer only appears for sufficently small S0.

Based on the knowledge of the planar case, we now address the spherical geometry. For
300 nm particles (a/ξr = 30), fig. 3a) presents a three-dimensional phase diagram in terms
of temperature τ , reduced anchoring strength γ, and preferred order paramter S0 locating
the different types of wetting layers. The phase diagram is the result of extensive numerical
calculations which determined the three-dimensional order parameter field close to the particle.
They were performed on a PC cluster and would take a few years on a typical state-of-the art
PC. As in the planar case, the uniaxial oblate wetting layer is always stable for 0 < S0 ≤ −1.
Decreasing S0 induces first a phase transition to a boojum configuration for sufficiently large
γ and then to the tetrahedral wetting layer. Note that the stability region of the boojum is
restricted to a very narrow S0 interval and, therefore, hardly visible in fig. 3a). The solid line
located on the upper surface indicates a line of tricritical points. To the left of this line, the
transition from oblate ordering to the boojum is of first order and to the right it is of second
order. In contrast, the transition from the boojum to the tetrahedral configuration is always
discontinuous. We never found that the boojum evolves continuously into the tetrahedral
configuration via an asymmetric arrangement of the 1/2 disclinations. One could speculate
about the narrow stability region of the boojum configuration. After all, as noted above, in
the bulk nematic phase the corresponding +1 disclination lines are not stable and “escape
into the third dimension” to reduce the free energy. This, however, cannot occur in our case,
since for the biaxial order parameter the equivalent +1 disclination line is actually stable [19].
So the system reduces the free energy by adopting the tetrahedral configuration.

In fig. 3b) we draw contour lines of the surfaces of the three-dimensional phase diagram for
different values of S0 using the spline function of the graphical program gnuplot. The resulting
two-dimensional phase diagrams resemble very much the one in the planar case (see fig. 2) with
the exception that for decreasing temperature, we have a sequence of three phases as indicated
for S0 = −2. As before, the solid and dashed lines mean first- and second-order transitions,
respectively, and the dots show the tricritical points. To account for size effects, we also studied
particles with radius a = 100 nm (a/ξr = 10). The phase diagrams in fig. 4 qualitatively look
the same as for the larger particles. Comparing the two-dimensional diagrams of the planar
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Fig. 4 – The same phase diagrams as in fig. 3 but now for 100 nm particles.

case and the two particle sizes for a fixed S0, one clearly recognizes that with increasing
curvature the temperature range where the biaxial wetting layers exist becomes smaller. So
curvature suppresses the biaxial phases. Surprisingly, the rough location of the transition lines
with respect to the anchoring strength γ does not seem to be affected by curvature.

How reasonable are the rescaled parameters of the surface potential where the biaxial
wetting layers are observed? Using Landau parameters from 5CB (b = 0.7 · 107 erg/cm3,
c = 0.5 · 107 erg/cm3) [20] and ξr = 10nm, we arrive at γ = W/ 1 erg

cm3 . So the well achievable
anchoring strength W = 1 erg/cm3 gives the right order of magnitude for γ. According to the
Landau-de Gennes theory, the rescaled bulk nematic order parameter at the phase transition
is Sb = 0.61 which corresponds to the measured typical value of Smb = 0.3 for the Maier-
Saupe order parameter Sm = 〈3 cos θ − 1〉/2 [21]. For a perfectly aligned nematic (prolate
order) Sm = 1; the perfect oblate order gives Sm = −1/2. This means that in our scaling
the minimum value of S0 in the surface potential is S0 = −Sb/Smb/2 = −1.02. This value
is further decreased for smaller Smb, so that our predicted transitions from the oblate to the
biaxial surface phases, especially the tetrahedral configuration, should be observable.

Finally, we add some comments about the influence of fluctuations on our phase diagrams.
It was argued that in the planar geometry, the transition from the biaxial to the oblate
wetting layer is governed by defect unbinding, i.e., by the Berezinskii-Kosterlitz-Thouless
(BKT) mechanism [12–14]. As a result, the second-order transition line is shifted to smaller
temperatures (see, e.g., ref. [13]). The treatment of fluctuations is beyond the scope of this
paper. However, it seems possible that under the BKT mechanism the boojum configuration
vanishes completely from the phase diagrams in figs. 3 and 4 due to its very narrow existence
region. In an elaborate and elegant treatment, Nelson finds that the tetrahedral configuration
of the two-dimensional nematic is stable against thermal fluctuations deep in the nematic
phase, whereas close to the phase transition the fluctuations are fairly large [1]. How these
results apply to our studies is not completely clear. It certainly depends on how strongly the
biaxial ordering is developed in the tetrahedral configuration [22].

In conclusion, we have shown that nematic wetting layers around spherical particles pos-
sess indeed a tetrahedral configuration where 1/2 disclinations are located at the vertices of a
tetrahedron. This offers an interesting route towards tetravalent colloids. The necessary pla-
nar anchoring can be realized in inverted nematic emulsions [9], or in lyotropic liquid crystals
composed of rodlike surfactant micelles [23]. A possible method to detect nonuniform wetting
layers is depolarized light scattering [24]. Furthermore, the Brownian rotational motion of the
particles should be measurable by dynamic light scattering [25].
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