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PACS. 83.10.-y – Rheology: Fundamentals and theoretical.
PACS. 47.32.-y – Rotational flow and vorticity.
PACS. 83.60.Bc – Linear viscoelasticity.

Abstract. – We lay the theoretical basis for one-bead microrheology with rotating particles,
i.e., a method where colloids are used to probe the mechanical properties of viscoelastic media.
Based on a two-fluid model, we calculate the compliance and discuss it for two cases. We first
assume that the elastic and the fluid component exhibit both stick boundary conditions at the
particle surface. Then, the compliance fulfills a generalized Stokes law with a complex shear
modulus whose validity is only limited by inertial effects, in contrast to translational motion.
Secondly, we find that the validity of the Stokes regime is reduced when the elastic network is
not coupled to the particle.

Introduction. – In recent years, the experimental method of microrheology [1] emerged
as a powerful tool to monitor the mechanical properties of viscoelastic soft materials [2, 3]
especially in biological systems [4, 5] including cells [6]. The main idea is to disperse micron-
sized beads into the material and monitor their motion either as response to external forces
(active method) [6, 7] or due to Brownian fluctuations (passive method) [5, 8]. Whereas in
the first method the frequency-dependent response function or compliance is measured di-
rectly, it is inferred in the second method from the particle’s positional fluctuations using the
fluctuation-dissipation theorem and the Kramers-Kronig relations [5].

In this article, we address the particles’ rotational degree of freedom and lay the theoretical
basis to use it in microrheology. To monitor the particles’ orientations, they have to be
anisotropic. And indeed, first experimental implementations of one-bead microrheology with
either birefringent spherial particles [9] or microdisks [10] do exist.

The main theoretical problem of microrheology is how the particle compliance measured
in experiments relates to the viscoelastic properties of the material quantified in its complex
shear modulus. We will show here, based on a model-viscoelastic medium, the so-called two-
fluid system [11], that the compliance in the rotational case obeys a generalized Stokes law
which is only limited by an upper crossover frequency, in contrast to the translational motion
where the validity is restricted to a frequency window [5, 12]. So one advantage of rotating
particles is that they extend the frequency range that allows a straightforward interpretation
of the experimental results by the Stokes law.
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Let us first review the reason for the frequency window in the translational case [5]. As a
model-viscoelastic medium, we consider an elastic component, e.g., a polymer network, which
can move relative to a Newtonian fluid. A particle embedded in this medium experiences
an external oscillating force with amplitude F (ω) and reacts with an oscillating displacement
described by the amplitude x(ω) = α(ω)F (ω), where α(ω) is the compliance as a function
of frequency ω. For ω = 0, the displaced particle creates a deformation field in the elastic
network which includes both shear and compressional contributions. For small ω, the elastic
network thus has to move relative to the incompressible fluid since the latter only allows
shear motions. However, the frictional force between both components increases with their
relative speed. Hence, beyond a crossover frequency ωc1, elastic network and viscous fluid
are strongly coupled and can be considered as a single incompressible viscoelastic medium.
The compliance for a spherical particle then assumes the simple generalized Stokes relation
α(ω) = [6πG(ω)a]−1, where G(ω) = µ− iωη is the complex shear modulus, η is viscosity and
µ denotes Lamé’s elastic constant associated with shear. Beyond a second crossover frequency
ωc2, inertial effects of the fluid become important and the generalized Stokes relation is no
longer valid. This scenario is confirmed by detailed calculations using a “volume localization”
approximation [12]. On the other hand, a rotating particle creates a pure shear field in the
elastic network for all frequencies. Hence, we expect the validity of the Stokes relation to
extend to ω = 0.

Theory. – In the following, we consider a rotating particle with an oscillating angular
displacement Φ(t) = Φ(ω)e−iωt, where the direction of the vector Φ(ω) characterizes the axis
of rotation. Since the pressure around the particle stays constant, the oscillating velocity
field in a pure incompressible Newtonian fluid is described by the Helmholtz equation (∇2 +
k2)v(r, ω) = 0 with wave number k =

√
iωρ/η [13]. Under stick boundary conditions it

assumes the form
v(r, ω) = −iω

(a
r

)3

[Φ(ω) × r]
1 − ikr

1 − ika
eik(r−a) (1)

which determines the external torque T (ω) = α−1(ω)Φ(ω) to drive the oscillating particle.
For small frequencies, the compliance obeys the familiar Stokes result, α−1/ − iω = 8πa3η.
Deviations from this law occur around ω0 = 2η/(ρa2), i.e., when the penetration depth
δ = Im(k) equals the particle radius a.

We now study the equivalent problem for a model-viscoelastic medium, represented by a
two-fluid model [11]:

0 = µ∇2u + (λ+ µ)∇(∇ · u) + Γ
(

v − ∂u

∂t

)
, (2)

ρ
∂

∂t
v = −∇p + η∇2v − Γ

(
v − ∂u

∂t

)
, div v = 0. (3)

Here an incompressible Newtonian fluid with shear viscosity η is coupled to an elastic medium
with Lamé constants λ, µ via a conventional friction term. By dimensional analysis, the
friction coefficient Γ = η/ξ2 contains a characteristic length ξ which is on the order of the
mesh size in, e.g., an actin network [12]. We neglect the mass density of the elastic medium
to the one of the Newtonian fluid right from the beginning. The characteristic parameters of
the theory are the reduced mesh size ξ/a, ωe = µ/η and ω0 = 2η/(ρa2). The two frequencies
quantify the fluid inertia, shear elasticity, and shear viscosity. Typical numbers for an actin
solution [5] are ωe = 103 Hz and ω0 = 105 Hz based on a = 3µm, η = 0.01P and µ = 1 N/m2.

An oscillating rotating particle creates pure shear fields for both displacement u and
velocity v (div u = div v = 0) and keeps the pressure constant. One then derives from
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eqs. (2) and (3) that the amplitudes u(r, ω) and v(r, ω) of the oscillating fields obey a vector
Helmholtz equation in analogy to the pure Newtonian fluid, however with k2 replaced by a
matrix K2. To solve this equation, we introduce

u(r, ω) = −a2Φ(ω) ×∇g(r) and v(r, ω) = −ωea
2Φ(ω) ×∇h(r) (4)

and finally arrive at the equivalent Helmholtz equation for g(r) and h(r):

(∇2
1 + K2

) (
g(r̄)
h(r̄)

)
= 0 with K2 =

a2

ξ2

(
iω/ωe 1
−iω/ωe 2iωξ2/(ω0a

2) − 1

)
. (5)

The reduced radial coordinate is denoted by r̄ = r/a and the radial part of the Laplace
operator reads ∇2

= 1
r̄2

∂
∂r̄ (r̄2 ∂

∂r̄ ). The general solution of eq. (5) is given by exp[iK r̄]/r̄ or
(
g(r̄)
h(r̄)

)
=

1
r̄
S

(
exp[i

√
λ1r̄] 0

0 exp[i
√
λ2r̄]

) (
b1
b2

)
, (6)

where λi are the eigenvalues of K2. The matrix S = (e1,e2) is composed of the eigenvectors
e1 and e2 and therefore diagonalizes K2. Finally, the constants bi are determined by the
boundary conditions on the surface of the particle. Note that the roots

√
λi have to be chosen

such that the exponentials in eq. (6) decay to zero for large r̄.
In general, the external torque on a particle is calculated by T = − ∫

r×σ df , where σ is
the stress tensor and df the directed surface element. In our case, df ∝ −r and the velocity
v and displacement vector u point along the azimuthal direction relative to the axis Φ(ω).
Therefore, only the respective components of the elastic and viscous stress tensor,

σu
ϕr = µ

(
∂uϕ

∂r
− uϕ

r

)
and σv

ϕr = η

(
∂vϕ

∂r
− vϕ

r

)
, (7)

contribute and give a torque parallel to Φ(ω) with magnitude T = Tu + T v, where

Tu = 8πµa3Φ(ω)
(

1 +
iω

3ωe

[
S11b1λ1e

i
√

λ1 + S12b2λ2e
i
√

λ2

])
, (8)

T v = −iω8πηa3Φ(ω)
(

1 − 1
3

[
S21b1λ1e

i
√

λ1 + S22b2λ2e
i
√

λ2

])
. (9)

The prefactors on the right-hand side of eqs. (8) and (9) are the Stokes results for a pure
elastic or viscous medium.

In the following we consider two cases to determine the constants bi from the boundary
conditions. In the first case, we assume stick boundary conditions for both the viscous and the
elastic component at the particle surface, i.e., v = −iωu = −iωΦ(ω) × r|r=a. So we assume
that the elastic network is attached to the particle. In the second case, the elastic network
is not attached and the elastic stress tensor σu

ϕr in eqs. (7) vanishes on the particle surface.
As a result, the elastic torque Tu is zero and the displacement field has to fulfill the mixed
boundary condition (∂uϕ/∂r−uϕ/r)|r=a = 0. In both cases, we can write down the solutions
in analytic form. However, the concrete formulas are too large to convey direct information.
We therefore discuss their graphic representations and determine certain limits.

Case 1. – In figs. 1 and 2 we plot the real and the imaginary part of the inverse compliance
α−1(ω), relative to their results for a pure elastic and viscous system, as a function of ω/ωe

and ω0/ωe; the mesh size is ξ/a = 0.1. For low frequencies, they both exhibit constant values
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Fig. 1 – Case 1: real part of the inverse compliance α−1, normalized to 8πa3µ as a function of ω/ωe

and ω0/ωe; the parameter is ξ/a = 0.1.

Fig. 2 – Case 1: imaginary part of the inverse compliance α−1, normalized to ω8πa3η as a function
of ω/ωe and ω0/ωe; the parameter is ξ/a = 0.1.

which correspond to the generalized Stokes relation α−1 = 8πa3G(ω) with G(ω) = µ − iωη.
This result can be extracted from our theory as long as the term 2ωξ2/(ω0a

2) in the matrix
K2 of eq. (5) can be neglected against one, i.e., as long as inertial effects of the fluid are
negligible. Note that, unlike the translational motion, the validity of the Stokes relation
extends to ω → 0; there is no lower crossover frequency. The reason is clearly that a rotating
sphere only creates pure shear fields for both dynamic variables u and v. This indicates
that elastic network and viscous fluid are strongly coupled to each other and move together.
Therefore, their dynamics is described by the equation of linear elasticity with the complex
shear modulus G(ω) (reminiscent to a Voigt element [3]) or, alternatively, by the Navier-
Stokes equation with η replaced by η − µ/(iω). With the latter view, the compliance can be
calculated using the result from the Newtonian fluid [13] with a complex wave number given
by k2 = ρω2/(µ− iωη):

α−1(ω) = 8πa3G(ω)
1 + 2

√
x+ 2x+ 2x3/2/3 − i2x(1 +

√
x)/3

1 + 2
√
x+ 2x

, x =
ω

ω0

1
1 + iωe/ω

. (10)

The last equation fits the graphs in figs. 1 and 2 well. It especially accounts for the deviations
from the Stokes law due to inertial effects at higher frequencies. In a pure Newtonian fluid,
inertia becomes noticeable around the frequency ω0; just set ωe = µ/η = 0 in eq. (10). For the
strongly coupled viscoelastic system, the onset of inertial effects is not so clear from eq. (10).
We therefore determined the appropriate crossover frequencies empirically by requiring that
the compliance α(ω) deviates from the Stokes law by 10%. As is already obvious from the
graphs in figs. 1 and 2, we find that the crossover frequencies exhibit different behavior for
the real and the imaginary part of α−1(ω). For the real part, it scales as

√
ω0ωe ∝ µ/(ρa2),

whereas for the imaginary part it behaves as ω0.77
0 ω0.23

e for ω0/ωe < 1 and passes over to ω0

for ω0/ωe > 1. This crossover is clearly seen in fig. 2.
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Fig. 3 – Case 2: real part of the inverse compliance α−1, normalized to 8πa3µ as a function of ω/ωe

and ξ/a; the parameter is ω0/ωe = 100.

Fig. 4 – Case 2: imaginary part of the inverse compliance α−1, normalized to 8πa3µ as a function of
ω/ωe and ξ/a; the parameter is ω0/ωe = 100.

So far, we discussed the case of ξ/a	 1. For ξ/a ∼ 1, the regime of generalized Stokes law
still exists but eq. (10) does not apply anymore, although the deviations are not dramatic. The
regime ξ/a ∼ 1 means that the continuum limit can no longer be applied to elastic networks
such as actin. However, in the two-fluid model ξ just quantifies the frictional coupling between
fluid and elastic component. One could wonder if there exists a viscoelastic system with such
a weak coupling so that ξ/a ∼ 1 is applicable.
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Fig. 5 – Case 2: imaginary part of the inverse compliance α−1, normalized to ω8πa3η as a function
of ω/ωe and ξ/a; the parameter is ω0/ωe = 100.
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Case 2. – We now address the case where the elastic network is not coupled to the
particle surface, it only reacts to shear flow via the friction term in eq. (2). In fig. 3, we plot
the real part of the inverse compliance as a function of reduced frequency ω/ωe and mesh size
ξ/a; the additional parameter is set to ω0/ωe = 100. For small frequencies, the real part is
close to zero, in contrast to case 1, where it assumes the reference Stokes value of 8πa3µ, as
already discussed. The friction between the two components is sufficiently small so the fluid
permeates the elastic network without deforming it noticeably. Then for increasing frequency,
an edge occurs and Re(α−1) enters the region where the Stokes law is valid. Note, however,
that this region is considerably reduced compared to case 1. Correspondingly, the imaginary
part in fig. 4 (also in units of 8πa3µ!) exhibits a ridge. This is what we roughly expect since
real and imaginary part of the compliance are connected via Kramers-Kronig relations [14].
The features described so far can be explained by the formula

α−1(ω) = 8πµa3

[
ω2τ2

1 − iωτ
− iωτ

(
1 − 1

ωeτ

)]
with τ =

1
ωe

a

3ξ

√
1 − iω/ωe , (11)

which follows from our theory when we neglect again the “inertial term” 2ωξ2/(ω0a
2) in the

matrix K2 of eq. (5) and set ξ/a 	 1. To determine τ , the complex root with positive real
part has to be taken. For ω/ωe 	 1, the existence of the edge and ridge in relation (11)
is obvious. Furthermore, the relation demonstrates that edge and ridge, or the onset of the
Stokes regime, occur at a frequency which scales as ξ/a. This is in contrast to translational
motion where it scales as (ξ/a)2 [5, 12]. In fig. 5 the imaginary part of α−1 with proper scale
factor ω8πa3η is plotted. It reveals the strong effect of friction between both components
when the fluid permeates the elastic network. Note the logarithmic scale of the vertical axis.
Inertial effects for ξ/a 	 1 are again described by eq. (10). So the Stokes regime in fig. 5
extends up to ω/ωe = 10 in agreement with fig. 2. Nevertheless, we find that in case 2 the
validity of the Stokes law is reduced.

Conclusions. – Based on a two-fluid model, we determined and discussed the compliance
for a rotating spherical particle embedded in a viscoelastic medium. In the case where both
the viscous and the elastic component obey stick boundary conditions at the particle surface,
we identify the validity of a generalized Stokes law, and therefore a simple relation to the
complex shear modulus, starting from zero frequency and limited only at high frequencies by
inertial effects. This is in contrast to translational motion. When the elastic network is not
coupled to the particle, the compliance exhibits a region of low elasticity and high effective
viscosity starting from zero frequency, indicating the strong friction which occurs when the
fluid permeates the elastic network. The regime of the Stokes law is reduced.

Real viscoelastic systems such as actin solutions possess a frequency-depended complex
shear modulus [2, 4, 5]. So to discuss the frequency dependence of the compliance, e.g., in
case 1, one has to consider a non-trivial path in figs. 1 and 2 determined by the varying
parameter ω0/ωe ∝ η2(ω)/µ(ω). This is, however, no problem in the Stokes regime but leads
to additional effects outside the Stokes regime as, e.g., in case 2.

Our study of different boundary conditions clarifies that the interpretation of compliances
measured in experiment needs care. So far, in the translational case, stick-boundary conditions
are always assumed. Our results show that some slip of the elastic network changes the
measurable compliance dramatically. This could lead to false interpretations.

Clearly, one-bead microrheology with rotating particles also suffers from the drawback
that it does not probe bulk properties, as is done with the more recently developed two-bead
method which measures the correlated motion of two particles [15]. On the other hand, since
in the Stokes regime the shear fields decay as 1/r2 instead of 1/r for translational motion,
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rotating particles could be used to monitor explicitly the effect of the embedded beads on the
elastic network [16]. A challenge will be to develop the theory for two-bead microrheology
including the rotational degree of freedom [17].

In this article we laid the theoretical basis for microrheology with rotating particles. Our
results demonstrate that it can be a useful extension of existing methods based on translational
motion and also complements them. So we hope that our work stimulates further experimen-
tal investigations which use rotating particles as colloidal probes to explore the mechanical
properties of soft materials, especially in connection with biological systems.
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