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We study the friction drag of a spherical particle in the isotropic phase of a nematic liquid crystal close to the
isotropic-nematic transition point. To describe the orientational order in the liquid crystal, the second-rank
tensor order parameter Q�� is employed. We solve the hydrodynamic equations for Q�� and the fluid velocity
� in order to determine the friction drag. In our discussion of the friction drag, we concentrate on four
parameters: the temperature, the surface order parameter, the particle radius, and the Ericksen number Er
�characterizing the ratio of the viscous force to the elastic force�. The temperature dependence of the friction
drag agrees well with experiments that show an increasing friction drag when the isotropic-nematic phase
transition is approached from above. Furthermore the friction drag increases with the surface order parameter
due to the more pronounced surface nematic layer, and for larger particles it is less affected by this layer.
Finally, we observe that in the range of Er we study, the friction drag is almost independent of Er although
flow-induced order occurs for sufficiently large Er and surface order parameter.
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I. INTRODUCTION

Particles in a fluid have long been an important subject in
hydrodynamics from the viewpoint of technological applica-
tion as well as in a fundamental sense. Well-known proper-
ties of rigid spherical particles in a simple isotropic fluid
include the Stokes law �1–3�; a particle moving with velocity
�0 experiences a drag force fS=6�R0��0 �here R0 is the par-
ticle radius and �0 is the shear viscosity of the fluid�. The
important Stokes-Einstein formula �1,2,4–6� relates the
Brownian motion of a suspended particle with friction; the
self-diffusion coefficient D of particles is given by D
=kBT /6��R0, where kB is the Boltzmann constant and T is
the temperature. In his pioneering studies on colloidal dis-
persions, Einstein also showed that the effective shear vis-
cosity �eff of a dilute suspension of rigid spheres with vol-
ume fraction � satisfies �eff /�=1+5/2� �1,2,5�. Those
findings about the hydrodynamic features of particles in an
isotropic fluid constitute part of the basis of colloidal sci-
ence.

More complicated but interesting behavior can be ex-
pected when the fluid surrounding the particles possesses
internal degrees of freedom expressed by further hydrody-
namic variables besides mass density �supposed to be con-
stant in an incompressible fluid� and momentum density. One
of the typical and well-known examples of such fluids is a
liquid crystal �7,8�, which shows a rich variety of me-
sophases depending on temperature and its molecular archi-
tecture. A nematic phase, characterized by long-range orien-
tational order and the absence of positional order of the
constituent molecules, is the simplest example of liquid crys-
tal mesophases and has long been an important subject of
liquid crystal science.

There have been several theoretical and numerical studies
focusing on the hydrodynamics of a nematic liquid crystal in
the presence of particles �spheres �9–16� or cylinders
�17–19��. In the case of small particle velocity �to be precise,
small Ericksen number characterizing the ratio of the viscous
force to the elastic force�, it has been shown that the friction
coefficient depends on the direction of the particle motion
with respect to the orientation of the background nematic
liquid crystal �10,12–14,17,18�. When the particle velocity is
large enough, strong distortions of the orientation profile and
the resulting motion of the topological defect accompanying
the particle have been suggested by numerical calculations
�15,16,19�. Earlier experimental studies using a falling-ball
apparatus �20,21�, image processing of the Brownian motion
�22�, or Mössbauer technique �23,24� did not focus on the
anisotropic nature of the particle diffusion �or the friction
tensor� in a nematic liquid crystal. However, such an aniso-
tropy has been identified experimentally using optical twee-
zers �25� or direct imaging of Brownian motion �26� in quan-
titative agreement with previous numerical studies �13,14�.

In the present paper, we consider the effect of a liquid
crystal above the isotropic-nematic �I-N� transition on the
hydrodynamic properties of a suspended spherical particle. It
has been argued since the pioneering theoretical work by
Sheng �27� that a nematic phase can wet a surface even when
the bulk is in an isotropic state. In our recent work �28�, we
have shown that a spherical particle is also wetted by a nem-
atic phase, although due to curvature the properties of the
surface layer are different from those on a flat substrate. It is
therefore natural to expect that the nematic wetting layer at
the surface of a particle should affect its hydrodynamic be-
havior, in particular its Brownian motion. Several experi-
mental studies have been performed concerning the Brown-
ian motion of particles suspended in an isotropic phase of a
nematic liquid crystal �22,24,29�. How the particle diffusion
near the transition point is influenced by temperature was*Electronic address: fukuda.jun-ichi@aist.go.jp
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intensively studied by Böttger et al. �29� using dynamic light
scattering. They found that the effective hydrodynamic ra-
dius of a particle Reff, deduced from the Stokes-Einstein re-
lation, increases when the I-N transition is approached from
above. They attributed it to the increase in the surface-
nematic-layer thickness when the temperature decreases.

However, to our knowledge, there have been no theoreti-
cal or numerical studies to discuss the hydrodynamics of a
liquid crystal above but close to the I-N transition in the
presence of particles. The purpose of this paper is to present
our numerical attempt to investigate the hydrodynamics of a
liquid crystal around a particle when the liquid crystal is
isotropic in the bulk and nematic order is induced at the
particle surface due to rigid normal anchoring. We employ a
second-rank tensor order parameter �7,30� for the description
of the orientational order because we have to pay attention to
both the strength and the direction of the orientational order
of the liquid crystal. We consider the case where a spherical
particle is fixed in a liquid crystal that flows with constant
velocity at infinity. By solving the hydrodynamic equations
for the orientational tensor order parameter and the fluid ve-
locity, we determine the orientation and the velocity profiles
around the particle, which enable us to calculate the friction
drag of a spherical particle in a liquid crystal above the I-N
transition. The important variables in the present problem
other than material parameters are the strength of the surface
order, the temperature, the particle radius, and the fluid ve-
locity at infinity. We present our numerical results with a
focus on the dependence of the friction force on those four
variables.

Recent growing attention to liquid crystal colloid disper-
sions �31–38� has motivated several experimental studies to
investigate how the I-N transition of the host liquid crystal
influences the static and dynamic properties of liquid crystal
colloidal dispersion �39,40�. Previous theoretical attempts
concerning liquid crystal colloids close to the I-N transition
have been restricted to the investigation of the static nature
�28,41–45�. We believe that our present study will provide
basic knowledge for further investigations of the dynamical
aspects of liquid crystal colloids close to the I-N transition.

The organization of this article is as follows: Section II
gives a detailed explanation about the set of hydrodynamic
equations for the orientational order parameter and the fluid
velocity, together with our numerical treatment. In Sec. III,
we present the results of our numerical calculation. Section
IV concludes this article.

II. MODEL

A. Free energy and the molecular field

We use a symmetric and traceless second-rank tensor Q��

for the description of the orientational order of a liquid crys-
tal. Since de Gennes proposed the use of a tensor order pa-
rameter for the discussion of the I-N phase transition �30�, it
has been extensively used to investigate various phenomena
associated with the I-N transition theoretically. Following de
Gennes, we can write the free energy density of a nematic
liquid crystal in terms of Q�� as

f�Q��� =
1

2
A Tr Q2 −

1

3
B Tr Q3 +

1

4
C�Tr Q2�2

+
1

2
L1��Q����Q��, �1�

where A, B, C, and L1 are phenomenological coefficients and
hereafter we take summations over repeated greek indices
denoting the Cartesian coordinates x, y, and z. Tr implies
taking the trace of a tensor, i.e., Tr Q2=Q��Q�� and Tr Q3

=Q��Q��Q��. The first three terms of Eq. �1� constitute the
bulk energy in terms of a Landau-de Gennes expansion and
the fourth term is the elastic energy. For simplicity we adopt
the one-constant approximation for the elastic energy and do
not take into account other terms allowed from symmetry
�L2��Q����Q�� and L3��Q����Q���. The molecular field that
appears in the hydrodynamic equations given below is de-
fined by

H�� � −
	

	Q��
� dr f�Q���

= − AQ�� + BQ��Q�� − C�Tr Q2�Q�� + L1�
2Q��.

�2�

Since there are already many phenomenological param-
eters, we simplify the discussion by rescaling the order pa-

rameter as Q��=sQ̄�� with s=2	6B /9C. The molecular field

in terms of Q̄�� reads

H�� =

f

s
H̄��

=

f

s

− �Q̄�� +

3	6

4
Q̄��Q̄��

− �Tr Q2�Q̄�� + �R
2�2Q̄��.� . �3�

Here ��A /Cs2=27AC /8B2 is the reduced temperature. The
unit of the free energy 
f �Cs4=64B4 /729C3 is associated
with the latent heat. We have also defined the characteristic
length associated with the nematic coherence length

�R �	 L1

Cs2 =	27L1C

8B2 . �4�

We notice that in a strict sense the nematic coherence length
at the transition point is 2	2�R, which is about 10 nm �28�.

We here summarize the bulk transition properties. The
first-order I-N transition is located at �=1/8=0.125 and the
nematic order parameter at the transition point is given by

Q̄��= Q̄0�n�n�− �1/3�	��� with Q̄0=	6/4�0.612 �here n is
an arbitrary unit vector corresponding to the director�. In this
study we are interested in the cases where the bulk liquid
crystal is in the isotropic state, therefore we always set �
1/8 in the numerical calculations.

B. Hydrodynamic equations

There have been several theoretical attempts to formulate
the set of hydrodynamic equations for the order parameter
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Q�� and the fluid velocity � �46–50�. In this study we em-
ploy those of Olmsted and Goldbart �47� given by

� �

�t
+ � · ���� = �����, �5�

N�� �  �

�t
+ v · ��Q�� + ����

�a�Q�� − Q�����
�a��

= �1���
�s� +

1

�2
H��

�s� , �6�

� · � = 0. �7�

Here �������� is the velocity gradient tensor, � is the mass
density of a liquid crystal assumed to be constant, and �1 and
�2 are kinetic coefficients. The symbols �s� and �a� denote
the symmetric and traceless part and the antisymmetric part
of a second-rank tensor, respectively. We assume incom-
pressibility of the nematic liquid crystal �Eq. �7��. The stress
tensor ��� is formally written as

��� = ���
i�s� + ���

i�a� + ���
d − p	��, �8�

where

���
i�s� = �3���

�s� − �1H��
�s� , �9�

���
i�a� = H��

�s�Q�� − Q��H��
�s� , �10�

���
d = −

� f�Q���
����Q���

��Q��. �11�

Here ���
i�s� is the dissipative part of the stress tensor with �3

being a third kinetic coefficient. Note that �3 /2 is the shear
viscosity also known from a conventional liquid. In Sec. III
and Appendix B we will argue that due to flow-induced
liquid-crystal order it is renormalized to an effective shear
viscosity. The same kinetic coefficient �1 as in Eq. �6� ap-
pears in Eq. �9�, which reflects Onsager’s reciprocal relation.
The antisymmetric part ���

i�a� is associated with the kinetic
coupling between Q�� and � arising from director rotations.
���

d is the stress tensor due to elastic distortions. The pres-
sure p in Eq. �8� serves as a Lagrange multiplier to ensure
the incompressibility of the nematic liquid crystal �Eq. �7��.

To rescale the hydrodynamic equations, we choose the
radius of the spherical particle R0 as a unit length. We also
introduce the velocity �� of the liquid crystal at infinity and
set the unit time as t0�R0 /��. We write the rescaled version
of the hydrodynamic equations as

Re �

� t̄
+ �̄ · �̄��̄�

= �̄��2�̄��
�s� +

1

Er* �− �̄1H̄��
�s� + �̄��

i�a� + �̄��
d � − p̄	��� ,

�12�

N̄�� �  �

� t̄
+ �̄ · �̄�Q̄�� + ��̄��

�a�Q̄�� − Q̄���̄��
�a��

= �̄1�̄��
�s� +

1

�̄2Er*
H̄��

�s� . �13�

Here �̄=R0�, �̄=��
−1�, and t̄= t / t0. We also have �̄��

d /���
d

= �̄��
i�a� /���

i�a�=1/
f , �̄��= t0���, N̄��= �t0 /s�N��, and the res-

caled kinetic coefficients read �̄1��1 /s and �̄2�2�2s2 /�3,
where s and 
f have already been defined in connection with
the rescaling of the molecular field in Eq. �3�. The Reynolds
number Re�2���R0 /�3 is much smaller than unity in the
present problem dealing with submicron particles. Therefore,
in the following numerical calculations we set Re=0 .

One of the important dimensionless quantities character-
izing the hydrodynamic flow is the ratio of the viscous force
to the elastic force of the liquid crystal

Er =
Er*

�̄R
2

=
�3��R0

2s2L1
, �14�

where �̄R=�R /R0. Er is nothing more than the Ericksen num-
ber �51� apart from a numerical factor.

We close this subsection by giving the relation between
the kinetic coefficients in the present system and the Leslie
viscosities

�̄1 =
	6

4
−

�2

�1
�, �̄2 =

8

3

�1

�4
. �15�

The derivation of Eq. �15� is given in Appendix A. From
Ref. �52�, we find that the Leslie viscosities of 4-
methoxbenzylidene-4� -n -butylaniline �MBBA� at T
=44.0 °C �1.1 °C below the I-N transition temperature� are
�1=−0.0228 Pa s, �2=0.0192 Pa s, and �4=0.0374 Pa s,

These values yield �̄1=0.73 and �̄2=1.35, which will be
used in the following numerical calculations.

C. Setup of the system

A spherical particle of radius R0 is fixed with its center
located at the origin of the coordinate system. At infinity, a
uniform flow is imposed along the z axis, so that the fluid
velocity at infinity is �=��ez, where ez is the unit vector
along the z direction. Since we consider the cases where the
bulk liquid crystal is in an isotropic state, we set Q��=0 at
infinity.

At the particle surface, the no-slip boundary condition is
employed meaning �=0. We also impose perpendicular sur-

face anchoring and set Q̄��= Q̄0�er�er�− �1/3�	���, where Q̄0

is the scalar order parameter characterizing the surface-
induced order and er is the unit vector along the radial direc-
tion �normal to the particle surface�. We notice here that
since the order parameter at the particle surface is fixed, the
surface-layer phase transition as discussed in Ref. �28� is
absent in the present study. We also note that from Galilei
invariance, the flow and director profiles of a flowing nem-
atic with the velocity ��ez around a fixed particle are equiva-
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lent to those of a nematic at rest around a particle moving in
the opposite direction with the velocity −��ez.

D. Calculation of the friction drag

Once a stationary profile of the orientational order param-
eter Q�� and the fluid flow � is obtained, one can calculate
the friction drag f fric by

f fric�� =� dr� 1

�2
H��

�s� H��
�s� + �3���

�s� ���
�s� � . �16�

Equation �16� implies that the work done by the external
force f fric necessary to keep the system in a stationary state is
equal to the total dissipated energy in the system �right-hand
side of Eq. �16�. See Ref. �47��. In terms of the rescaled
variables, Eq. �16� can be rewritten as

f fric

�3R0��

=� dr̄� 1

2�̄2

 1

Er*�2

H̄��
�s� H̄��

�s� + �̄��
�s� �̄��

�s�� , �17�

where r̄=r /R0.
An alternative way of evaluating the force acting on the

particle is to integrate the stress tensor at the particle surface.
We do not adopt it because as described below, we use the
vorticity instead of the pressure in determining the flow pro-
file. An additional calculation is then necessary to evaluate
the pressure at the surface. We also notice that essentially the
same procedure of calculating the friction force based on the
dissipation has already been employed as a numerically reli-
able method in Refs. �13–15�.

E. Details of the numerical calculations

The numerical system is similar to that presented in our
previous study �16,53,54�. In the present problem we can
safely assume rotational symmetry about the z axis that is
parallel to the flow direction at infinity, which renders the
problem an effectively two-dimensional one. The treatment
of the rotational symmetry is described in detail in Ref. �54�.

We first introduce a variable �=1−R0 /r, where r is the
distance from the origin, the center of the particle. Then we
prepare a rectangular lattice with equal grid spacings in the
�� ,�� space, where � is the polar angle. The number of grid
points in the initial system is 33 in the � direction and 65 in
the � direction. Since the order parameter varies on a length
scale set by the nematic coherence length �R�R0, we em-
ploy the adaptive mesh refinement procedures presented in
Ref. �54�. We refine the numerical grids located in ��0.1
�close to the particle surface� up to two levels for R0 /�R
=200 and one level for R0 /�R=50. Note that in contrast to
our previous study �54�, no mesh refinement/unrefinement is
carried out in the course of the calculation; the numerical
grids remain unchanged throughout the simulations.

We integrate Eq. �13� by a simple explicit scheme after
calculating the fluid flow � at each time step. For the evalu-
ation of �, instead of directly using Eq. �12�, we introduce

the vorticity �̄= �̄� �̄ and eliminate the pressure p̄ by ap-
plying the curl operator �notice that �� ��p̄�=0�, which,
together with Re=0, yields

0 = �̄2�̄� +
1

Er*�����̄��̄	�− �̄1H̄	�
�s� + �̄	�

i�a� + �̄	�
d � , �18�

where ���� is the Levi-Civita symbol �����=1 if �, �, � is an
even permutation of x, y, z and ����=−����=−�����. From
the definition of �̄ and the incompressibility condition �7�,
we also have

�̄2�̄ = − �̄ � �̄ . �19�

For a given Q̄�� �and therefore given H̄	�
�s�, �̄	�

i�a�, and �̄	�
d �,

Eqs. �18� and �19� are a set of equations for �̄ and �̄. We use
a multigrid method implemented on the numerical grid, as
defined above, to solve them. Here we do not present the
details of the implementation but just notice that a multigrid
method is one of the efficient relaxation methods for solving
partial differential equations. Interested readers may refer to
Sec. 19.6 of Ref. �55� for the details of multigrid methods.
The boundary conditions for �̄ have already been described

above. For �̄, we impose �̄�r=��=0 and �̄�r=R0
= �̄

� �̄�r=R0
�recall the definition of �̄�.

III. RESULTS AND DISCUSSIONS

We begin this section with the summary of the important
dimensionless variables in the present problem; they are �i�
the reduced temperature � �see Eq. �3��, �ii� the surface order

parameter Q̄0, �iii� the reduced particle radius R̄0� �̄R
−1

=R0 /�R �see Eq. �4� for the definition of �R�, and �iv� the
Ericksen number Er characterizing the fluid velocity �Eq.
�14��. We discuss the effect of these four variables in this
order.

Before presenting our numerical results, we notice that

�̃iso =
1

2
�31 +

1

2
�̄1

2�̄2� �20�

should be regarded as the effective shear viscosity of an iso-
tropic liquid crystal which replaces the bare value 1/2�3. It
is valid when the fluid flow is sufficiently slow. The deriva-
tion of Eq. �20� is given in Appendix B. Here we merely

mention that the correction 1/2�̄1
2�̄2 arises from the flow-

induced orientational order Q̄�� in the limit of small Er*. In
the following we therefore plot the friction drag f fric calcu-
lated by Eq. �17� in units of the Stokes friction force
6��̃isoR0�� in an isotropic fluid whose shear viscosity is �̃iso.

A. Effect of temperature „�…

We plot in Fig. 1 the temperature ��� dependence of the
friction drag f fric calculated by Eq. �17� for different surface

order parameters �Q̄0�. The other parameters chosen are R̄0

=20 �corresponding to R0�70 nm in real units� and Er
=0.1 �we will give in Sec. III C a more detailed argument
about the choice of Er�. The temperature interval 
�=0.1
corresponds to 0.90 K for 5CB �43� and 0.26 K for MBBA
�material parameters given in �47� have been used�. Obvi-
ously the friction drag increases with approaching the tran-
sition temperature ��=0.125� from above. This behavior has
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indeed been observed in light scattering experiments using
5CB as a host fluid �29�. Intuitively it can be understood as
follows. The surface layer thickness is essentially governed
by the nematic coherence length. This length decreases with
increasing temperature, hence smaller layer thickness results
in a smaller effect of the surface layer on the friction drag.
Figure 2 plots the spatial variation of the nematic order

Tr Q̄2 around the particle. A more rapid decay of the nematic
order in the case of higher temperature is clearly observed.

We also find a weaker temperature dependence of the fric-

tion drag for a smaller surface order parameter Q̄0. In par-
ticular, almost no effect from temperature variations is

present in the case of Q̄=0 �56�. Böttger et al. �29� found
that the temperature dependence of the effective hydrody-
namic radius �directly related to the friction drag� is weaker
for smaller particle radius. They attributed it to the fact that
nematic order at the surface of a smaller particle is reduced
since larger elastic distortions arise from the larger surface
curvature. Our findings seem to support their argument, al-
though in Fig. 1 the particle radius is fixed and the surface
order parameter is kept constant in our simulations.

One question may be raised from Fig. 1: Why do the
high-temperature limits of the rescaled friction drag for dif-

ferent Q̄0’s not approach the same value? The answer is
simple: The temperature is not high enough for the values of
the friction drag to converge. The thickness of the surface
layer, which is of the order of the nematic coherence length,
must be zero for that convergence. However the coherence
length approaches zero very slowly with increasing
���1/	�� and a very large � will be necessary to achieve the
convergence of the friction drag �recall that the coherence
length at �=0.5 is half as large as that at �=0.125. See also
Fig. 2�. Moreover, short-coherence-length cases cannot be
dealt with unless very fine numerical grids are allocated
around the particle. Therefore we are not interested in the
asymptotic behavior of the friction drag in the high-
temperature limit.

We notice that the temperature dependence of the surface

order parameter Q̄0 is not considered here; it is treated as a
given parameter. A more realistic approach to the tempera-
ture dependence of the friction drag would take into account
this temperature dependence based on the theoretical frame-

work in Ref. �28� where a surface potential for Q̄0 is used.
Then, the real friction drag as a function of temperature is a

curve which intersects the Q̄0 curves in Fig. 1 at different
values of �.

B. Effect of the surface order „Q̄0… and the particle

radius „R̄0…

We present in Fig. 3 how the friction drag depends on the

surface order parameter Q̄0 for different particle radii R̄0. The
other parameters are �=0.125 �I-N transition temperature�
and Er=0.1. Figure 3 clearly indicates that the friction drag

is a monotonically increasing function of Q̄0, which agrees
with the intuition that the friction is enhanced by stronger
surface order. This behavior was already visible in Fig. 1.
One also finds that the effect of the surface order is more

pronounced when the particle radius R̄0 is smaller. This can
be understood intuitively from the observation that the effect
of the surface nematic layer becomes less significant for
larger particle radii. To rationalize our argument we show in
Fig. 4 the spatial variation of the nematic order around the
particle at �=0.125. In Fig. 4�a�, the thickness of the surface

FIG. 1. Temperature ��� dependence of the rescaled friction drag

f fric /6��̃isoR0��. The parameters used are R̄0=20 and Er=0.1. Note
that the I-N transition temperature is �=0.125.

FIG. 2. Variation of the nematic order �Tr Q̄2� with the distance
r from the center of the particle �in units of �R� for different tem-
peratures �. The left-hand vertical axis corresponds to the particle
surface. The data are taken along the +z-direction ��=0�, although
as shown in Fig. 6 below, the � dependence of the orientational

order is almost unobservable. The parameters used are Q̄0=0.6,

R̄0=20, and Er=0.1.

FIG. 3. Surface order parameter �Q̄0� dependence of the rescaled
friction drag f fric /6��̃isoR0��. The parameters used are �=0.125
and Er=0.1.
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nematic layer itself becomes larger with increasing particle

radius. In the limit of R̄0=� �flat substrate� it diverges as �
→0.125 �27� whereas for small particles the growth of the
nematic layer is suppressed. On the other hand, Fig. 4�b�
shows that when all the lengths are rescaled in units of the
�unrescaled� particle radius R0, the surface nematic order de-
cays more rapidly for larger particle radius. So relative to the
particle radius its thickness becomes less important. This be-
havior clearly indicates that the effect of the surface nematic
layer becomes less important with increasing particle radius
�57�.

Figure 5 shows the effect of the reduced particle radius R̄0
on the rescaled friction drag. We find that the rescaled fric-

tion drag decreases with increasing particle radius. As noted
above, the effect of the surface nematic layer is more pro-
nounced when the particle radius is smaller. Furthermore, the
effect of the variation of the particle radius is stronger when

the surface order parameter Q̄0 is larger.

C. Effect of the Ericksen number (Er)

Before discussing the dependence of the friction drag on
the Ericksen number Er, we show in Fig. 6 the time evolution
of the orientation profiles for different Ericksen numbers.

The parameters used in the simulations are �=0.125, R̄0

=20, and Q̄0=0.6. For small Ericksen number �Er=0.1�, we
see almost no difference between the equilibrium profile, i.e.,
without flow �t̄=0�, and the stationary profile under flow �t̄
=0.135�. This result is reasonable since an Ericksen number
smaller than unity implies that the viscous force of the fluid
flow is so weak that it cannot distort the orientation profile of
the liquid crystal.

In contrast, for Er=5 we observe a strong effect of the
fluid flow; to the right of the particle nematic order emerges
�t̄=1.6875� and evolves along the fluid flow, possibly by ad-
vection. However, the flow-induced orientational order is ab-

sent for Q̄0�0.6, i.e., when Q̄0 is smaller than the bulk order
parameter at the phase transition. Furthermore, the size of the
ordered region decreases considerably at slightly higher tem-
peratures �for example, �=0.130�. Therefore, the occurrence
of flow-induced order in Fig. 6�b� may be attributed to the
fact that at the phase transition ��=0.125� isotropic and nem-
atic order cost the same energy so that they can coexist.

The above finding suggests that Er is not the relevant
parameter to classify flow-induced order. According to its
definiton �Eq. �14��, it compares viscous forces from the fluid
flow to elastic forces due to director distortions around the
particle of radius R0. However, in the case presented here,
orientational order first has to be created and therefore the
relevant length is the nematic coherence length �R. It leads to
a “different” Ericksen number

FIG. 4. Variation of the nematic order �Tr Q2� with the distance
r from the center of the particle �in units of �a��R and �b�R0� for

different particle radii R̄0. As in Fig. 2, the left-hand vertical axis
corresponds to the particle surface, and the data are taken along the

+z direction ��=0�. The parameters used are Q̄0=0.6, �=0.125, and
Er=0.1.

FIG. 5. Particle radius �R̄0� dependence of the rescaled friction
drag f fric /6��̃isoR0��. The parameters used are �=0.125 and Er
=0.1.

FIG. 6. Time evolution of the orientation profiles in gray-scale

plots of Tr Q̄2 for �a� Er=0.1 and �b� Er=5. In white regions the
liquid crystal is in the isotropic state and it possesses nematic order
in the black regions. The numbers indicate the reduced time t̄ after

the application of the flow. The other parameters are Q̄0=0.6, �

=0.125, and R̄0=20. At the rightmost figures ��a�t̄=0.135 and �b�t̄
=16.875�, the system has reached a stationary state. The direction of
the fluid flow is from left to right along the horizontal z axis.
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Ẽr �
�3���R

2s2L1
=

Er

R̄0

, �21�

which for the present case �Er=5 and R̄0=20� gives Ẽr
=0.25, i.e., a value smaller than one. Therefore, except for

the special case of �=0.125 and Q̄0�0.6, we do not expect a
pronounced flow-induced order. Indeed, in some preliminary

calculations with Ẽr=1 �Er=20� flow-induced order is

clearly observed for wide ranges of Q̄0 and �, even in the

case of Q̄0=0 and �=0.150 �58�.
Figure 7 plots the dependence of the friction drag f fric on

the Ericksen number. The rescaled friction drag
f fric /6��̃isoR0�� is essentially independent of Er, although it

exhibits a very slight decrease for Er=5 and Q̄0=0.6 or 0.8.
We have already stated that for Q0�0.6 the equilibrium pro-
file of the order parameter is hardly affected for flow fields
with Er up to five. So it is clear that the friction drag is
constant. On the other hand, it is somewhat surprising that

even in the presence of flow-induced order �Er=5, Q̄0=0.6
or 0.8�, the rescaled friction drag shows almost no depen-
dence on Er. We have no clear understanding for this obser-
vation and expect that at higher Ericksen numbers the fric-
tion drag will be altered. As noted in �58�, however, at
present we cannot deal with large Er cases in a quantitative
manner.

We also note that for small particles it is quite difficult to
achieve large Er. When we choose typical values for the
material parameters, �3=4�10−2 Pa s and 
f =L1s2 /�R

2 =3
�105 J m−3, we find from Eq. �14� that �� must be as large

as 1.5 cm/s to realize Er=5 in the case of R̄0=20�R0

�70 nm�. Therefore except for extremely large Ericksen
numbers that do not seem to be accessible experimentally,
we can regard the rescaled friction drag as independent of Er.
In most of the calculations shown in the previous subsec-
tions, we therefore have chosen Er=0.1, in which case no
flow-induced order occurs.

IV. CONCLUDING REMARKS

We investigated the friction drag of a spherical particle in
a liquid crystal above the isotropic-nematic transition by

solving the hydrodynamic equations for the fluid velocity
and the orientational order parameter represented by a
second-rank tensor. We were interested in the effect of the
surface nematic layer induced at the particle surface, which
was taken into account in our numerical calculations by fix-
ing the orientational order parameter at the surface. Rigid
normal anchoring was imposed at the particle surface and
produced a director field pointing along the radial direction
in the absence of external flow.

All parameters in the system can be represented by four
dimensionless variables: the reduced temperature �; the sur-

face order parameter Q̄0; the particle radius R̄0 in units of the
nematic coherence length; and the Ericksen number Er. We
showed that the friction drag increases when the isotropic-
nematic phase transition is approached from above and that
the effect of temperature variations is stronger when the sys-
tem is closer to the transition. This result reproduces previ-
ous experiments measuring the effective hydrodynamic ra-
dius of a suspended particle in a liquid crystal. We also found
that a larger surface order parameter yields a stronger tem-
perature dependence of the friction drag.

The variation of the surface order parameter has a pro-
nounced effect on the friction drag; it increases monotoni-
cally with the surface order parameter. We also showed that
the effect of the surface nematic layer is more pronounced in
the case of smaller particles. These results are in agreement
with intuition.

From the observation of the profiles of the orientational
order, we found that just above the transition point the fluid
flow can induce orientational order away from the particle,
possibly by advection, when the Ericksen number is large

�Er=5� and the surface order is sufficiently strong �Q̄0

�0.6�. Nevertheless, the rescaled friction drag is almost in-
dependent of Er for Er�5.

We comment on a direct quantitative comparison of our
numerical results with possible experiments. In our numeri-
cal calculations, the order parameter at the particle surface
was fixed, so its temperature dependence was not taken into
account. Such a temperature dependence can, however, be
calculated within the theoretical framework of our previous
work �28� where we introduced a surface free energy for the
orientational order parameter and a proper method to treat
wetting transitions. Such a calculation would finally give a
more direct comparison of the numerical data to experi-
ments. Nevertheless, the numerical work presented in this
paper gives a clear account of the main features in the dy-
namical behavior of liquid crystal colloids close to the
isotropic-nematic phase transition.

Finally, we discuss the possibility of an experimental ob-
servation of the flow-induced orientational order. An indirect
way of detecting the flow-induced order would be a viscosity
measurement of colloidal dispersions with liquid crystal
hosts. In the absence of flow-induced order, it is expected
that a dilute colloidal dispersion behaves as a Newtonian
fluid whose viscosity obeys the Einstein formula �eff /�=1
+5/2� �where the volume fraction � should be renormalized
because of nematic wetting layers at the particle surfaces�.
However, flow-induced order around particles under a very
strong flow would lead to non-Newtonian behavior of the

FIG. 7. Ericksen number �Er� dependence of the rescaled fric-
tion drag f fric /6��̃isoR0��. The parameters used are �=0.125 and

R̄0=20.
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dispersion. A change in the shear viscosity would therefore
indicate the occurrence of flow-induced order around par-
ticles.

More direct evidence of flow-induced order would be ob-
tained by optical observation of birefringence due to induced
orientational order. Optical tweezers have been successfully
and extensively used to manipulate colloidal particles in liq-
uid crystal hosts �25,60�, and in the present case they will
provide a promising way to move a particle so fast as to
attain large Ericksen numbers �alternatively, they can be used
to fix a particle in a flowing liquid crystal�. As proposed in
�15�, a falling-ball experiment using micron-sized gold par-
ticles will be another possible candidate for the experimental
observation of the flow-induced order, because large particles
would allow one to achieve large Ericksen numbers �Er

�R0
3 and Ẽr�R0

2, the terminal velocity is proportional to R0
2�

and large mass density difference between the gold particle
and the liquid crystal is also preferable. Moreover, a different
geometry can be considered: a particle fixed between two flat
parallel substrates constituting a liquid crystal cell. In this
case the fluid velocity can be chosen large so that high Erick-
sen numbers are achieved more easily. Although this geom-
etry is different from the one in our study, it is considered as
an experimentally accessible system that allows the observa-
tion of flow-induced nematic order around a particle. The
flow property around an obstacle in a liquid crystal cell is
one of the important subjects of the liquid crystal industry
and we hope that experimental studies along this direction
will be promoted by our work.
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APPENDIX A: DERIVATION OF THE RELATION

BETWEEN �̄1,2 AND THE LESLIE VISCOSITIES

Substituting the uniaxial form of the order parameter
Q��=Q0�n�n�− �1/3�	��� into Eq. �6�, one obtains

N� �  �

�t
+ � · � + ���

�a�n�� =
1

Q0
�1���

�s� n� +
1

�2
H��

�s� n�� .

�A1�

We note that in Eq. �A1�, only the components perpendicular
to n are relevant �7� and those parallel to n have been
dropped. Comparing Eq. �A1� with the Ericksen-Leslie equa-
tion �7� h�=�1N�+�2���

�s� n� �h� is the molecular field in
terms of n�, we have

�1 = Q0−
�2

�1
� . �A2�

Under the one-constant approximation, the elastic energy
density in terms of n is f = �K /2����n��2, where K is the
Frank elastic constant. Again by substituting Q��=Q0(n�n�

− �1/3�	��) into Eq. �1�, we find that K=2L1Q0
2. Since the

molecular field in terms of n is h�=K�2n�, one has H��
�s� n�

= �1/2Q0�h�. Then from Eq. �A1� and the Ericksen-Leslie
equation

�2 =
�1

2Q0
2 . �A3�

At the isotropic-nematic transition point, Q0= �	6/4�s
�see Sec. II A�. Recalling the definition of rescaled kinetic

coefficients �̄1 and �̄2 given after Eq. �13�, we finally arrive
at Eq. �15� from Eqs. �A2� and �A3�. Here we have used the
relation �3=�4, deduced from a direct comparison of Eq. �9�
with the stress tensor of the Ericksen-Leslie equation.

APPENDIX B: SHEAR VISCOSITY OF AN ISOTROPIC
LIQUID CRYSTAL �iso

In this appendix we show that the bare shear viscosity
1/2�3 of an isotropic liquid crystal is renormalized by flow-
induced order. One has to take into account the contribution
of the molecular field H��, because the contribution from the

flow-induced orientational order Q̄�� is not at all negligible
even when the flow-induced order is very small in a weak
flow. In fact, in the cases where Q���0, the molecular field

behaves as H̄��
�s� =−�̄1�̄2Er*�̄��

�s� +O��Er*�2� for small Ericksen
numbers �see Eq. �13��. Since the rescaled velocity gradient
tensor �̄��

�s� is of order unity, it can be shown from Eq. �3� that

Q̄��=O�Er*�, which is a posteriori consistent with Eq. �13�.
In the case of Q̄0=0 at the particle surface �corresponding to
a disordering surface; contribution of the surface order is

absent�, Q̄��=O�Er*� should be satisfied throughout the sys-
tem in the case of weak flow Er*�1. Then from Eq. �17�, we
find

f fric

6�R0��

�
1

2
�31 +

1

2
�̄1

2�̄2� � dr̄
1

3�
�̄��

�s� �̄��
�s� . �B1�

In the case of Stokes flow, �dr̄�1/3���̄��
�s� �̄��

�s� =1. Hence if
the deviation of the flow profile from the Stokes one is small
enough, we finally obtain

f fric

6�R0��

�
1

2
�31 +

1

2
�̄1

2�̄2� . �B2�

The right-hand-side of Eq. �B2� defines �̃iso, Eq. �20�. The
numerical results presented in Fig. 3 indeed demonstrates

that in the case of Q̄0=0 and �=0.125, f fric /6�R0��=1.005
��̃iso�=1.366�1/2 �3� irrespective of the particle size. The
agreement of the numerically obtained viscosity f fric /6�R0��

with �̃iso indicates that �̃iso rather than 1/2 �3 should be
regarded as the effective shear viscosity of an isotropic liquid
crystal.

We note also that from Eqs. �6� and �9� one obtains

FUKUDA, STARK, AND YOKOYAMA PHYSICAL REVIEW E 72, 021701 �2005�

021701-8



���
i�s� = �31 +

1

2
�̄1

2�̄2����
�s� − �1�2N��. �B3�

This formulation of the dissipative stress ���
i�s� in terms of the

time variation of the order parameter N�� is in complete
parallel with the Ericksen-Leslie equations of a nematic liq-
uid crystal �7� and has indeed been employed by Qian and
Sheng �48� in the derivation of the hydrodynamic equation of
Q��. In the case of an isotropic liquid crystal, Q��=O�Er*�

leads to N��=O�Er*�, that is, the contribution of the second
term in the right-hand side of Eq. �B3� is negligible com-
pared to the first one. Therefore Eq. �B3� again yields the

conclusion that �̃iso=1/2 �3�1+1/2 �̄1
2�̄2� has to be consid-

ered as the effective shear viscosity of the isotropic liquid
crystal. It may be worthwhile to notice that Ref. �59� gives
similar arguments about the interpretation of the effective
viscosity measured in ultrasonic sound attenuation experi-
ments.
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