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Abstract: We investigate the influence of a non-scattering layer on the
temporal field autocorrelation function of multiple scattered light g (1)(rrr,τ)
from a multilayer turbid medium such as the human head. Data from
Monte Carlo simulations show very good agreement with the predictions
of the correlation-diffusion equation with boundary conditions taking into
account non-diffusive light transport within the non-scattering layer. Field
autocorrelation functions measured at the surface of a multilayer phantom
including a non-scattering layer agree well with theory and simulations
when the source-receiver distance is significantly larger than the depth and
the thickness of the non-scattering layer. Our results show that for source-
receiver distances large enough to probe the dynamics in the human cortex,
the cortical diffusion coefficient obtained by analyzing field autocorrelation
functions neglecting the presence of the non-scattering cerebrospinal fluid
layer is underestimated by about 40% in situations representative of the
human head.
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1. Introduction

Non-invasive imaging of human brain function based on absorption of near-infrared light has,
in the past years, seen a steady enhancement of temporal and spatial resolution (for a recent
review see [1]). Using measurements of the time-of-flight of transmitted photons for multiple
source-receiver pairs and sophisticated data inversion including anatomical information, full-
brain maps of regional oxygen saturation in the infant brain have been measured entirely non-
invasively with a spatial resolution of about 1cm [2]. While the strong scattering of light in tis-
sue blurs absorption contrasts measured by near-infrared spectroscopy, multiple scattered light
carries rich information when the coherence length of the illumination source is large enough to
produce a speckle pattern on the tissue surface. This speckle pattern contains information on the
positions of all the scatterers, such as red blood cells, membranes and subcellular organelles,
in the volume swept by the diffuse photon cloud. Microscopic motions of the scatterers in the
tissue over distances much smaller than the wavelength of light, λ , then lead to fluctuations of
the speckle pattern. This is the basis of diffusing-wave spectroscopy (DWS; also called diffuse
correlation spectroscopy), the extension of quasi-elastic light scattering to multiple scattering
of light [3, 4]. The central quantity measured by DWS is the temporal autocorrelation func-
tion g(1)(rrr,τ) = 〈E∗(rrr,t)E(rrr,t +τ)〉/〈|E(rrr,t)|2〉 of the scattered electric field E(rrr,t) measured
at the position rrr at time t, which is related to the mean-squared displacement 〈Δr 2(τ)〉 of the
scatterers within the time τ by

g(1)(rrr,τ) =
∫ ∞

l∗
P(rrr,s)exp

[
−1

3
k2

0〈Δr2(τ)〉 s
l∗

]
ds. (1)
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Here k0 = 2π/λ is the wavenumber of light in the medium, l ∗ is the transport mean free path
length and P(rrr,s) is the normalized distribution of photon path lengths s at the position rrr for
a source located at the origin. The latter quantity can be directly measured by a time-of-flight
experiment.

Very recently, DWS has been used to detect functional activation in the human brain through
intact scalp and skull, revealing a significantly accelerated decay of g (1)(rrr,τ) during contralat-
eral stimulation of the somatomotor cortex by a finger opposition protocol [5, 6]. Analyzing
measured field autocorrelation functions with a homogeneous semi-infinite 1-layer model, us-
ing an empirical correction factor accounting for the underestimation of the cortical diffusion
coefficient by the 1-layer model, resulted in a functional acceleration of the DWS signal by
about 40% which was attributed to the functional enhancement of the cortical blood flow rate
[5]. Modelling the field autocorrelation function by a 3-layer model reflecting the different dy-
namical and optical parameters in the scalp, skull and cortex, Li et al. obtained a functional
increase of the cortical diffusion coefficient by about 38% [6]. These functional accelerations
of the speckle fluctuations observed in DWS are consistent with the vasodilation-induced in-
crease of the blood flow velocity during functional activation [7], and are much larger than the
functional changes of blood volume or oxygen saturation measured by NIRS [8], which makes
DWS a potentially attractive method to non-invasively monitor cerebral perfusion. Neverthe-
less, the observation that DWS autocorrelation functions measured over the human cortex are
not described by directed or random flow, but rather by Brownian motion [6], has raised ques-
tions about the validity of modelling DWS data with simple single- or multilayer models for the
head with fully diffusive photon transport in scalp, skull and cortex. Indeed, Monte Carlo sim-
ulations of light propagation in tissue phantoms show that the diffusion approximation for the
path-length distribution P(rrr,s) breaks down in the presence of a extended non-scattering inclu-
sion representing, e.g., the cerebrospinal fluid (CSF) layer surrounding the cortex [9, 10, 11].
Given that the field autocorrelation function depends, by Eq. (1), not only on the dynamics of
the scatterers, but also on the path-length distribution P(rrr,s), the presence of the cerebrospinal
fluid layer might thus affect the shape of the field autocorrelation function g (1)(rrr,τ) and the
determination of parameters characterizing the cortical dynamics, such as the cortical diffusion
coefficient, from experimental data.

In this publication, we study the influence of a non-scattering layer on the field autocorrela-
tion function g(1)(rrr,τ) from head-like multilayer systems, using experimental data from a tissue
phantom, Monte Carlo simulation and an extension of the analytical correlation-diffusion equa-
tion to non-diffusive boundaries in the absence of refractive index mismatches. The compari-
son of simulations with analytical theory on phantoms with optical parameters representative
for the human head shows very good agreement provided the modified boundary conditions
are taken into account. While well described by the analytical theory for large source-receiver
distances, experimental data from the multilayer phantom show slight disagreement at short
source-receiver distances which might arise from (i) refractive index mismatches or (ii) low-
order scattering not taken into account by the diffusion theory. The analysis of simulated DWS
data from a (2+1)-layer model (2 diffusive and 1 non-scattering layers) agrees very well with
the analytical (2+1)-layer theory over a wide range of diffusion coefficients characterizing the
cortical dynamics, allowing to retrieve cortical diffusion coefficients to within 20%. The simple
2-layer diffusion theory neglecting the non-scattering CSF layer agrees reasonably well with
the simulated (2+1)-layer data, but underestimates the cortical diffusion coefficient by about
40%.

The paper is organized as follows: in Section 2.1, we derive an expression for the field auto-
correlation function g(1)(rrr,τ) for the backscattering geometry with both point-like source and
receiver in the presence of a non-scattering layer located between two scattering layers and
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briefly describe the Monte Carlo (MC) simulation procedure used to obtain g (1)(rrr,τ) for a mul-
tilayer medium. Experimental details are given in Section 2.2. The influence of the thickness
and absorption coefficient of the non-scattering layer on g (1)(rrr,τ) is studied with simulation
data and theory in Section 3.1, and experiments on a multilayer phantom are compared with
theory in Section 3.2.

2. Materials and methods

2.1. Theory and simulations

A. Diffusion model We will restrict ourselves to the case of the backscattering geometry
in a laterally infinite medium where the point-like source and receiver are separated by the
distance ρ . The diffusion approximation allows to model the propagation of light in a multilayer
medium as shown in Fig. 1. A clear, non-scattering layer with thickness d is located between
two scattering layers (layer 1, thickness Δ1, and layer 2 with thickness Δ2).

scalp
& skull

CSF

cortex

S R

�

z

�
�

�
�

d

Fig. 1. Anatomical magnetic resonance image of human head structure (left) modelled by
a laterally infinite multilayer geometry (right). CSF: cerebrospinal fluid layer. Source (S)
and receiver (R) are assumed to be point-like.

The diffusion approximation is not valid in a non-scattering medium such as the CSF. Never-
theless, by accounting for its presence by the boundary conditions between this non-scattering
layer and the scattering layers, the diffusion equation can be recovered, as was shown for the
case of the transmission geometry with plane-wave illumination [12]. Similar to the diffusion
equation for the radiance, the (unnormalized) temporal autocorrelation function

G(rrr,τ) = g(1)(rrr,τ)〈|E(rrr,t)|2〉 (2)

satisfies the diffusion equation

[∇2 −α2(τ)]G(rrr,τ) = −s0δ (rrr− rrr ′) (3)

where α2(τ) = 3μaμ ′
s + k2

0μ ′
s
2〈Δr2(τ)〉, with μa the absorption coefficient and μ ′

s = 1/l∗ the
reduced scattering coefficient. The source located at rrr′ = {ρρρ ′ = 000,z′} inside the first layer at
depth z′ = 1/μ ′

s1 has a time-independent strength s0. Eq. (3) is conveniently solved using the
Fourier transform of G(rrr,τ) with respect to the transverse coordinate ρρρ

Ĝ(qqq,z,τ) =
∫

d2ρρρ G(rrr,τ)eiqqq·ρρρ , (4)
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whose solution for the mth layer is [6]

Ĝm(qqq,z,τ) = Am exp(βmz)+Bm exp(−βmz), (5)

where β 2
m(qqq,τ) = α2

m(τ)+qqq2. The constants Am and Bm are determined by the boundary con-
ditions. Near the surface (z = 0) the boundary conditions are [6]

Ĝ0(qqq,z,τ)− z0
∂ Ĝ0(qqq,z,τ)

∂ z
= 0, z = 0, (6)

Ĝ0(qqq,z,τ) = Ĝ1(qqq,z,τ), z = z′, (7)

∂ Ĝ0(qqq,z,τ)
∂ z

=
∂ Ĝ1(q,z,τ)

∂ z
+ s0, z = z′, (8)

where zm is the extrapolation length of layer m [6]. Here we have divided the first layer into 2
sub-layers: layer 0 for 0 < z < z′ and layer 1 for z′ < z < Δ1. Layer 2 (z > Δ1 +d) is separated
from layer 1 by the non-scattering layer of thickness d. Light which is scattered from layer 1
into the non-scattering layer may travel ballistically and will thus be converted to a diffusing
photon in layer 2 with an angle-dependent transfer probability 0 ≤ f (q = |qqq|) ≤ 1. The same
holds for the transfer of photons from layer 2 to layer 1. The boundary conditions including the
transfer probability f (q) can thus be written as

[
Ĝ1(qqq,z,τ)+ z1

∂ Ĝ1(qqq,z,τ)
∂ z

]
z=Δ1

= f (q)
[
Ĝ2(qqq,z,τ)+ z2

∂ Ĝ2(qqq,z,τ)
∂ z

]
z=Δ1+d

, (9)

f (q)
[
Ĝ1(qqq,z,τ)− z1

∂ Ĝ1(qqq,z,τ)
∂ z

]
z=Δ1

=
[
Ĝ2(qqq,z,τ)− z2

∂ Ĝ2(qqq,z,τ)
∂ z

]
z=Δ1+d

. (10)

The Fourier transform of the measured field autocorrelation function at the surface is given
by

Ĝ0(qqq,z = 0,τ) = numerator/denominator (11)

where for Δ2 → ∞, i.e. a semi-infinite layer 2,

numerator = s0z0{exp(−β1(2L− z′))
×[(1−β1z1)(1+ β2z2)− f (q)2(1+ β1z1)(1−β2z2)]

−exp(−β1z′)[(1+ β1z1)(1+ β2z2)− f (q)2(1−β1z1)(1−β2z2)]} (12)

and

denominator = exp(−2β1L)(1−β1z0)
×[(1−β1z1)(1+ β2z2)− f (q)2(1+ β1z1)(1−β2z2)]

−(1+ β1z0)[(1+ β1z1)(1+ β2z2)− f (q)2(1−β1z1)(1−β2z2)]. (13)

In order to determine the transfer probability f (q), we use the formalism given in [13], assum-
ing that the sample is infinite in the direction parallel to the surface. We find (see Appendix)

f (q) = 2
∫ ∞

0
dρ ρ

d2J0(qρ)
(ρ2 +d2)2 exp

(
−μa

√
d2 + ρ2

)
, (14)
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where J0(x) is the zeroth order Bessel function of the first kind and μ a the absorption coefficient
of the non-scattering layer. In the case of a non-scattering layer without absorption, Eq. (14)
simplifies to

f (q) = qdK1(qd) (15)

where K1(x) is the modified Bessel function of the second kind. Note that for vanishing thick-
ness of the non-scattering layer (d = 0), f (q) = 1 and the diffusive boundary conditions of [14]
are recovered. The field autocorrelation function G 0(rrr,τ) at the position rrr = {ρρρ,z = 0} at the
surface of the sample is then obtained by the inverse Fourier transform of Ĝ0(qqq,z = 0,τ) [6],

G0(rrr,τ) =
1

2π

∫ ∞

0
dqq Ĝ0(q,z = 0,τ)J0(qρ). (16)

The field autocorrelation function g (1)(rrr,τ) is then obtained by normalization of G0(rrr,τ) with
its value at τ = 0.

In order to test the validity of this model, we carried out Monte Carlo simulations that allow
to look at the case with vanishing refractive index mismatch between the non-scattering and the
scattering layers, in which case the extrapolation lengths are given by z m = 2/(3μ ′

sm). The next
section briefly reviews the basic scheme of the Monte Carlo simulation procedure.

B. Monte Carlo simulations Monte Carlo simulations of the field autocorrelation func-
tion g(1)(rrr,τ) were performed by simulating the light propagation [15] in the multilayer geom-
etry of Fig. 1 (with P = 3 layers and a pixel size of 0.05cm). Each layer is characterized
by an absorption coefficient μa, a reduced scattering coefficient μ ′

s, and its thickness. The re-
fractive index of the layers was chosen to be uniform, n med = 1.33. At each scattering event,
the photon direction is randomly chosen such that the Henyey-Greenstein phase function with
anisotropy factor g = 0 is sampled for all layers. Photons entering or leaving the non-scattering
layer pass through the layer without being refracted or scattered. Simulations were carried out
with N = 4×106 photons.

The field autocorrelation function measured at the surface at the position rrr = {ρρρ,z = 0} can
be written as

g(1)(rrr,τ) =
N

∑
α=1

wα(rrr)g(1)
α (τ) (17)

where wα(rrr) is the weight of photon path α (with Mα steps) starting at the origin and ending
at the position rrr, determined by the absorption between successive scattering events [16]. The

quantity g(1)
α (τ) is the field autocorrelation function for photon path α which is given by

g(1)
α (τ) = exp

(
−1

6

Mα

∑
l=1

q2
α l

P

∑
j=1

hα l j 〈Δr2
j (τ)〉

)
(18)

where qα l is the magnitude of the scattering vector of the lth scattering event in path α and
〈Δr2

j (τ)〉 is the mean-square displacement within time τ in layer j. The weighting factor h α l j is
unity if the scattering event l of path α is within layer j, and zero otherwise. The motion of the
scatterers is modelled by Brownian diffusion, 〈Δr2

j (τ)〉 = 6Djτ , characterized by a diffusion
coefficient D j for each layer.

2.2. Experimental

Experiments were carried out at a temperature T = 295K on a phantom consisting of a cylin-
drical vat made of stainless steel (diameter 15cm) whose 2 fluid compartments were separated
by a glass window with thickness d = 0.05cm and refractive index ≈ 1.4 (see Fig. 2). Fluid
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layers consisted of turbid aqueous suspensions (refractive index n med = 1.33) of polystyrene
latex spheres. Particle diffusion coefficients, as measured by quasi-elastic light scattering on
dilute suspensions, were D1 = 9.2 × 10−9 cm2/s for layer 1 (representing scalp and skull)
and D2 = 1.26× 10−8 cm2/s for layer 2 (representing the cortex). Modelling the dynamics
within the skull by Brownian motion is motivated by the observation that DWS data from hu-
mans probing scalp and skull show no sign of static scattering (detectable by a reduction of the
intercept of the intensity autocorrelation function [17]), reflecting the fact that in both layers the
perfusion is strong enough to provide a fully fluctuating speckle pattern. Thicknesses of layers
1 and 2 were Δ1 = 0.88cm and Δ2 = 7cm, respectively. Layer 2 is sufficiently thick that for the
source-receiver distances used here, it can be assumed to be semi-infinite. Light from a diode
laser with wavelength λ0 = 802nm (Toptica TA-100) was delivered into a point-like source by a
multimode fiber. Multiple scattered light was collected at distances 0.5cm≤ ρ ≤ 4cm from the
source by a 6-mode fiber [18] and detected by an avalanche photodiode (Perkin-Elmer SPCM-
AQR-15-FC). The normalized autocorrelation function g (2)(rrr,τ) of the measured photon count
rate was computed by a correlator (ALV-5000E). In order to eliminate artefacts, the top liquid
layer was covered with a rigid black plastic sheet serving both to reduce internal reflections at
the free liquid surface, and to suppress surface fluctuations. Through small holes in the cover,
the source and receiver fibers were immersed about 1−2mm into the liquid in order to ensure
stable optical coupling.

Reduced scattering coefficients of layers 1 and 2 were determined from measurements of the
DWS signal in bulk samples of the respective latex suspensions in glass containers. Both source
and receiver fibers were immersed about 2.1cm into the suspensions, with similar distances to
the walls of the container. Measured g(1)(rrr,τ) were analyzed using the solution of the diffusion
equation for the infinite geometry [19], the independently determined values of the diffusion
coefficients D1,2 and assuming the absorption coefficient μa1,2 = 0.0223cm−1 of water [20].
Measured values μ ′

s1 = 8cm−1 and μ ′
s2 = 17.24cm−1 agreed to within 4% with calculations

based on Mie theory [21]. Anisotropy factors g 1 = 0.94 and g2 = 0.92 for layers 1 and 2,
respectively, were calculated using Mie theory [21].

plexiglass
window

O-ring

cover sheet

optical
fibers

layer 2

layer 1

glass
window

valve

Fig. 2. Schematic cross-section (not to scale) of the multilayer phantom. Scalp and skull
are represented by layer 1 and the cortex by layer 2. The cerebrospinal fluid layer is placed
between layers 1 and 2. The plastic sheet covering the top layer is used to suppress artefacts
in the DWS signal. Fibers are immersed about 1−2mm into the top liquid to ensure stable
optical coupling. Valve-equipped inlets allow for bubble-free filling of the lower compart-
ment.
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3. Results

3.1. Comparison between simulation and theory

A comparison of solutions of the correlation-diffusion equation (3) and simulated field autocor-
relation functions for the multilayer geometry of Fig. 1 is shown in Fig. 3 for source-receiver
distances ρ = 10mm and ρ = 20mm. We note the very good agreement between theory and
simulations both with and without the (non-absorbing) non-scattering layer between layers 1
and 2, provided the modified boundary conditions Eqs. (9)-(10) and the expression Eq. (15) for
the transfer probability f (q) are used. Similar to the DWS signal in transmission geometry, the
decay of g(1)(rrr,τ) is shifted towards shorter times as the source-receiver distance is increased,
reflecting the increasing contribution of long photon paths to the DWS signal. The presence of
a non-scattering layer separating the turbid layers 1 and 2 results in a slowing-down of the field
autocorrelation function. This is due to the fact that when photons are scattered into the non-
scattering layer, there is a finite probability that they travel ballistically far outside the banana-
shaped acceptance volume spanned by source and receiver [19], thus reducing the contribution
of long photon paths to the DWS signal. This is indeed reflected by the relatively weak effect of
the non-scattering layer on g(1)(rrr,τ) at the shortest source-receiver distance ρ = 10mm where
the typical depth probed by DWS, ρ/2 = 5mm, is smaller than the thickness of the top layer,
Δ1 = 8.8mm.

Figure 4 shows that when for fixed source-receiver distance the thickness of the non-
scattering (non-absorbing) layer is increased, the decay of g (1)(rrr,τ) is increasingly slowed
down, reflecting the larger probability for the photon to escape the acceptance volume by being
scattered into the non-scattering layer, which results in a reduced contribution of long paths
to g(1)(rrr,τ).

Figure 5 shows the comparison between the diffusion model and the MC simulations as one
changes the absorption of the non-scattering layer at constant thickness d = 0.1cm, calculating
the transfer probability f (q) by Eq. (14). As would be expected for increased absorption loss,
the decay of g(1)(rrr,τ) is slowed down as the absorption coefficient of the non-scattering layer is
increased. This effect is particularly pronounced for source-receiver distances large enough that
the acceptance volume intersects the non-scattering layer. Absorption within the non-scattering
layer thus counteracts the ballistic propagation of photons within the non-scattering layer and
tends to restore diffusive behavior.

3.2. Comparison between theory and experiments

As shown in Fig. 6, the field autocorrelation functions measured from the multilayer phan-
tom agree very well with the predictions of the correlation-diffusion equation for a (2+1)-layer
medium with boundary conditions modified to account for the presence of a non-absorbing,
non-scattering layer. For increasing source-receiver distance ρ , the decay of the field autocor-
relation function shifts monotonically towards shorter times, as would be expected for the in-
creasing weight of long photon paths to g (1)(rrr,τ). We find that the presence of the opaque cover
and the immersion of the fibers into the top layer is essential for observing the increasingly fast
decay of g(1)(rrr,τ) with increasing source-receiver distance. While the agreement between the-
ory and experiment is excellent for ρ ≥ 1.5cm, it is less so at shorter distances, in particular
for long times (τ > 10−4 s). We think that the observed discrepancies arise from contributions
of low-order scattering which are not correctly accounted for by the diffusion theory.

4. Discussion

As shown in Sec. 3.1, MC simulations and calculations based on the correlation-diffusion equa-
tion agree closely even in the presence of a non-scattering layer provided that the boundary
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Fig. 3. Field autocorrelation functions g(1)(rrr,τ) for a 2-layer geometry calculated from the
solution of the correlation-diffusion Eq. (3) (lines) and from simulation data (symbols), at
different source-receiver distances ρ = 10mm (a) and ρ = 20mm (b). Squares: g(1)(rrr,τ) in
the presence of a non-absorbing, non-scattering layer with thickness d = 5mm separating
the top and bottom turbid layers; circles: g(1)(rrr,τ) without the non-scattering layer. Para-
meters for the calculations are μ′

s1 = 8.0cm−1, μa1 = 0.0223cm−1, thickness Δ1 = 0.88cm
for the top layer 1, and μ′

s2 = 17.24cm−1, μa2 = 0.0223cm−1, and Δ2 = 15cm for the bot-
tom layer 2. Particle diffusion coefficients for layers 1 and 2 are D1 = 0.92×10−8 cm2/s
and D2 = 1.26× 10−8 cm2/s. The laser wavelength is λ0 = 802nm, the refractive index
is nmed = 1.33. For the simulations, the anisotropy factor is g = 0.

conditions for the correlation-diffusion equation are corrected for the non-diffusive correlation
fluxes at the boundaries with the non-scattering layer. For vanishing refractive index mismatch
between the layers, we find that deviations between simulations and theory become noticeable
(yet still small) at long lag times τ (corresponding to short photon path lengths s) and increasing
thickness of the non-scattering layer. On the other hand, when the absorption coefficient of the
non-scattering layer is finite, the agreement of theory with simulation is significantly improved,
reflecting the fact that diffusive propagation is restored by suppression of long ballistic photon
paths within the non-scattering layer.

Experimental data from a (2+1)-layer phantom agree well with the predictions of the
correlation-diffusion theory with boundary conditions Eqs. (6)-(10). In particular the agreement
between theory and the data at the large source-receiver distances ρ ≥ 1.5cm is remarkable
given that the theory curves contain no adjustable parameters. This indicates that for source-
receiver distances large enough to probe the cortex, the refractive index mismatch between
layers 1 and 2 and the intervening non-scattering layer (which is present in the experiment,
but neglected in the theory) only marginally affects the accuracy of the diffusion theory, pro-
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Fig. 4. Influence of the thickness d of the non-scattering layer thickness on the field au-
tocorrelation functions g(1)(rrr,τ). Symbols denote MC simulation results: d = 0.5cm (�),
d = 0.3cm (�), and d = 0.1cm (�). Lines: solutions of the correlation-diffusion equation.
The source-receiver distance is ρ = 2cm. Optical and dynamical parameters are as in Fig.
3.

vided the presence of the non-scattering layer is accounted for by the transfer probability f (q).
The discrepancy between theory and experiment for short source-receiver distances (ρ ≤ 1cm)
and long times is due to the breakdown of the diffusion approximation for short photon paths.
Enhanced agreement between experiment and theory for short photon paths could be achieved
either by simulating the light transport with realistic values of the anisotropy factors, or by solv-
ing the radiative transfer equation [22], which for the present multilayer geometry is however
beyond the scope of the present work.

In analyzing DWS data obtained from the human head through intact scalp and skull, the
thickness of the non-scattering cerebrospinal fluid layer is, in general, difficult to estimate. The
question thus arises how much the neglect of the CSF layer in the analysis of DWS data will
affect the determination of cortical diffusion coefficients. We have thus simulated field auto-
correlation functions over a large range of cortical diffusion coefficients 10 −9 cm2/s ≤ D2 ≤
10−6 cm2/s for the optical and geometrical parameters of the phantom experiment (represen-
tative of the situation in the human head). From the simulated data we retrieved the cortical
diffusion coefficient D2 by fitting the diffusion theory to the MC data, using a Levenberg-
Marquardt optimization routine. As shown in Fig. 7, the analysis of the MC data with a 2-layer
model, neglecting the presence of the non-scattering layer, underestimates the cortical diffusion
coefficient by about 40%. When the (2+1)-layer diffusion theory is used, the agreement with
the simulation is enhanced: the error of the retrieved cortical diffusion coefficient D 2 increases
from very small values at D2 ≤ 5×10−8 cm2/s to about 20% at D2 = 10−6 cm2/s. The underes-
timation of the cortical diffusion coefficient is mainly due to a discrepancy between simulation
and theory at long times due to the breakdown of the diffusion approximation. Using only the
short-time data with g(1)(rrr,τ) > 0.1 for the fitting, the error in the retrieved D2 can be made
very small (data not shown). However, this cutoff is arbitrary and should be used with caution.

The sensitivity of the field autocorrelation function to the presence of a non-scattering layer
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Fig. 5. Field autocorrelation functions g(1)(rrr,τ) for different values of the absorption co-
efficient μa of the non-scattering layer with thickness d = 0.1cm. Symbols denote MC
simulation results: μa = 0.01cm−1 (♦), μa = 0.5cm−1 (•), and μa = 1cm−1 (�). Lines:
solutions of the correlation-diffusion equation. The source-receiver distance is ρ = 2cm.
Other optical and dynamical parameters are as in Fig. 3.

for the present backscattering geometry is in marked contrast to the small effect of a non-
scattering layer in transmission geometry with plane-wave illumination [12]. This is due to the
fact that the contribution of long photon paths to the field autocorrelation function is reduced by
the presence of the CSF, both by the transfer probability f (q) < 1 and by absorption, while the
propagation of detected photons diffusing on short paths through layer 1 only is only marginally
modified. In the transmission geometry, on the other hand, g (1)(rrr,τ) is dominated by photon
paths close to the line of sight between source and receiver, resulting in an only minor distortion
of the path length distribution function by a non-scattering layer.

5. Conclusions

We studied the influence of a non-scattering layer (mimicking the cerebrospinal fluid [CSF] sur-
rounding the brain) in a head-like tissue phantom on the field autocorrelation function g (1)(rrr,τ)
of multiple scattered light by means of a diffusion theory, Monte Carlo simulations and exper-
iments for the backscattering geometry used in DWS experiments on the human head. For a
configuration with a point source and a point receiver, boundary conditions for the correlation-
diffusion equation were introduced accounting for the presence of the non-scattering layer.
Field autocorrelation functions g(1)(rrr,τ) predicted by this modified diffusion theory are in very
good agreement with Monte Carlo simulations in the absence of refractive index mismatches
between the layers. The comparison with experimental data indicates that contributions from
low-order scattering and, possibly, refractive index mismatches between the layers play a role
for source-receiver distances comparable to about twice the distance between surface and the
cerebrospinal fluid layer. The proper treatment of low-order scattering and refractive index
mismatches might thus be important for the quantitative analysis of DWS data from the human
head measured at short source-receiver distances. Data measured at larger source-receiver dis-
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Fig. 6. Field autocorrelation function g(1)(rrr,τ) measured from a (2+1)-layer phantom with
diffusive dynamics in the turbid layers 1 and 2 (symbols) and predictions of the correlation-
diffusion equation with modified boundary conditions for a non-absorbing, non-scattering
layer (lines), for source-receiver distances ρ = 1.0cm (
), ρ = 1.5cm (�), and ρ = 2cm
(�). Optical parameters are μ ′

s1 = 8cm−1 and μ ′
s2 = 17.24cm−1, μa1,2 = 0.0223cm−1, and

diffusion coefficients are D1 = 9.2×10−10 cm2/s for layer 1 and D2 = 1.26×10−9 cm2/s
for layer 2. Layer thicknesses are Δ1 = 0.88cm and Δ2 = 15cm for layers 1 and 2, respec-
tively, and d = 0.05cm for the non-scattering layer.

tance which are able to probe the cortex are, on the other hand, rather insensitive to refractive
index mismatches. The analysis by the diffusion theory qualitatively reproduces the simulated
DWS data for the optical and dynamical properties used here even when the presence of the
non-scattering layer is neglected. Nevertheless, the coupling between superficial and deep tis-
sue layers in the DWS signal and the ensuing complexity of the DWS signal for a multilayer
system makes it difficult to chart the region in parameter space where the diffusion theory sat-
isfyingly describes the simulations for other combinations of μ ′

s, μa, D1 and D2. Methods for
selectively probing deep tissue layers by DWS might ultimately help obviate these complica-
tions.
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Appendix: Boundary conditions

We start from Eq. (23) in Ref. [13], using the autocorrelation function G(rrr,τ) instead of the
average intensity U(rrr). In our case, since we have no light sources at the boundary (the right-
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Fig. 7. Error of the cortical diffusion coefficient D2 from a (2+1)-layer geometry retrieved
by analysis of g(1)(rrr,τ) with a 2-layer diffusion model with and without a CSF layer (�
and �, respectively). Data for D2 < 10−8 cm2/s (not shown) differ strongly from the true
values, possibly due to round-off errors introduced by the numerical Fourier transform in
Eq. (16). The thickness of the CSF layer is d = 0.3cm, and the source-receiver spacing
is ρ = 2cm. Other parameters are as in Fig. 3.

hand side of Eq. (24) of Ref. [13] vanishes) the total normal correlation flux is given by

Jm(rrr,τ) = −D ′
m∇nnn G(rrr,τ) (19)

where D ′
m = [3(μam + μ ′

sm)]−1 is the reduced photon diffusion coefficient of the mth layer, and nnn
is the unit vector normal to the interface. Eq. (36) of Ref. [13] is written with G(rrr,τ) as

G(rrr,τ) = CmJm(rrr,τ)+
1
π

∫
S

[
G(rrr′,τ)+

RJ

RU
Jm(rrr′,τ)

]
G (rrr− rrr ′)dS′ (20)

where S is the surface the irradiation originates from, which in our case is the xy plane,
Cm = (2−RJ)/RU = 2 since RU =

∫ 1
0 [1−|R0→1(θ )|]2 cosθ d(cosθ ) = 1/2 and RJ = 3

∫ 1
0 [1−

|R0→1(θ )|]2 cos2 θ d(cosθ ) = 1 in the case without refractive index mismatch (R0→1(θ ), the
reflection coefficient with incidence angle θ from medium 0 to medium 1, is equal to 1) from
Eq. (30) of Ref. [13]. Then the boundary conditions at z = Δ 1 are

G1(ρρρ,z = Δ1,τ) = −2D ′
1

∂G1(ρρρ ,z = Δ1,τ)
∂ z

+

1
π

∫
S

d2ρρρ ′
[
G2(ρρρ ′,z = Δ1 +d,τ)+ 2D ′

2
∂G2(ρρρ ′,z = Δ1 +d,τ)

∂ z

]
G (ρρρ −ρρρ ′) (21)

and at z = Δ1 +d:

G2(ρρρ ,z = Δ1 +d,τ) = 2D ′
2

∂G1(ρρρ,z = Δ1 +d,τ)
∂ z

+
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1
π

∫
S

d2ρρρ ′
[
G1(ρρρ ′,z = Δ1,τ)+

(
−2D ′

1
∂G1(ρρρ ′,z = Δ1,τ)

∂ z

)]
G (ρρρ −ρρρ ′) (22)

The quantity G (ρρρ −ρρρ ′) is given by Eq. (18) of Ref. [13],

G (ρρρ −ρρρ ′) =
exp(−μa|ρρρ −ρρρ ′|)

|ρρρ −ρρρ ′|2 cosθ cosθ ′ (23)

where μa is the absorption coefficient of the non-scattering layer. Defining ρ = |ρρρ −ρρρ ′| then
cosθ = cosθ ′ = d/

√
d2 + ρ2. Thus

G (ρ) = d2
exp

(
−μa

√
ρ +d2

)

(ρ2 +d2)2 . (24)

Taking the Fourier transform of Equations (21) and (22) we obtain, after some calculations,

Ĝ1(qqq,z = Δ1,τ)+2D ′
1

∂ Ĝ1(qqq,z = Δ1,τ)
∂ z

= f (q)
[
Ĝ2(qqq,z = Δ1 +d,τ)+ 2D ′

2
∂ Ĝ2(qqq,z = Δ1 +d,τ)

∂ z

]

(25)

Ĝ2(qqq,z = Δ1+d,τ)−2D ′
2

∂ Ĝ2(qqq,z = Δ1 +d,τ)
∂ z

= f (q)
[
Ĝ1(qqq,z = Δ1,τ)−2D ′

1
∂ Ĝ1(qqq,z = Δ1,τ)

∂ z

]

(26)
which are equivalent to Eqs. (9) and (10). The transfer probability f (q) is given by

f (q) =
1
π

∫
d2ρρρ

d2

(ρ2 +d2)2 exp

(
−μa

√
ρ +d2

)
exp(iqqq ·ρρρ) (27)

which reduces to Eq. (14), and, for μ a = 0, to Eq. (15).
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