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W. BÜHRER, S. FIEBIG and G. MARET

Fachbereich Physik, Universität Konstanz, Box M621,
D-78457 Konstanz, Germany

(Received 25 February 2007; in final form 10 August 2007)

The observation of Anderson localization of light has long been hindered by the
lack of clear-cut experimental signatures. Static transmission measurements for
instance would show an exponential decrease of intensity, which cannot be
distinguished from absorption. Here we present time-of-flight measurements of
single photons in three-dimensional samples. At long times, localization leads to a
less than exponential decrease of transmission, which is observed for very turbid
samples. While absorption cannot account for such a non-exponential decay, it is
still important to determine the absorption length independently. This can be
achieved from reducing the index mismatch of the scatterers and performing
similar time-of-flight measurements. Such a decrease of the scattering power of
the particles also shows that the only sample property leading to non-classical
diffusion is indeed the turbidity 1=kl� as predicted theoretically.

1. Introduction

For the last two decades, there were many attempts to observe signatures of
Anderson localization [1] of visible light [2, 3]. Until recently, progress in this field
was hampered by the fact that clear-cut experimental signatures for localization were
not commonly known. For instance in some experiments, the focus was on a
determination of static transmission [4], which due to localization of photons should
be suppressed exponentially with sample thickness L [2]. However, only in the
absence of absorption such an exponential decrease in transmission is a qualitative
change from a non-localizing sample [5, 6]. In samples close to the localization
transition the mean free path l* is extremely small and therefore transmission paths
are necessarily long, leading to a non-negligible absorption in real experiments [7].
Therefore, an exponential decrease in transmission is only quantitatively different in
localizing and non-localizing samples. Thus, static transmission measurements are
solely able to indicate the presence of localization if the absorption properties of the
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samples are measured independently and the decrease in transmission is faster than
that expected from absorption alone [8]. In fact in the presence of an additional
characterization of localization, as discussed below, it should be possible to describe
static transmission measurements without any adjustable parameters. In that case,
static transmission measurements are highly useful, as they present an independent
and quantitative self-consistency check whether the observed phenomenon obeys the
predictions of localization [8].

On the other hand, the dependence of the diffusion coefficient on increasing
disorder was studied [9]. There it was found that when the scatterer size is changed in
order to reduce l*, the diffusion coefficient is strongly reduced compared to its
expected value. In that case, however, the particle size becomes comparable to the
wavelength of light, such that resonance scattering [10] may become important. This
point was made quantitative by van Albada et al. [11]. They found that the increased
dwell time due to resonant scattering does indeed lead to a reduction in the transport
velocity and thus the diffusion coefficient, D / vTl

�. As we will discuss below,
however, the Mie resonances [12] in the scattering cross-section leading to the
reduction in transport velocity and the resonances leading to increased scattering
and thus localization are not exactly the same, such that the two effects can be
separated experimentally [13].

These problems with identifying experimental signatures for Anderson localiza-
tion imply that a determination of both the absorption length and the transport
velocity is necessary. This is done in the study reported here.

Considering the basic predictions of Anderson localization theory, i.e. the
renormalization of the diffusion coefficient with L [14], time-of-flight measurements
have been proposed as ideal candidates for signatures of localization [15–17]. This is
because effectively in time-resolved measurements the spread of the photon cloud
within the sample can be obtained. Thus at long times, the transmitted intensity is
simply given by expð��2hr2i=L2Þ. For a diffusive process with a mean square
displacement hr2i ¼ Dt, this leads to a simple exponential decay of transmission.
In the presence of absorption, this exponential decay is enhanced by the inverse
absorption time 1=�abs, however, it stays purely exponential [17]. Localization in
contrast would lead to a saturation in the growth of hr2i and hence to a slower-than-
exponential decay of the time-resolved transmission at long times [18]. Furthermore,
the absorption length can still be determined from the additional exponential decay
and the diffusion coefficient at short times is also measured. Combining time-of-flight
measurements with coherent backscattering experiments furthermore, yields a direct
determination of the transport velocity vT [13]. Here, we will discuss experiments to
this effect on strongly scattering TiO2 powders with particles sizes in the range of
220–540 nm. Performing these experiments for samples with various values of kl*
then also gives information on details of the phase transition to localization.

2. Experimental setup

The time-of-flight measurements are performed using a single photon counting
technique. Pulses of a width of �20 ps are passed through the sample and the time
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of flight of photons is measured from the time difference of the signal from a
photomultiplier behind the sample and that of a reference diode in front of the
sample [8, 18]. In these measurements it is important that only a fraction of a photon
(statistically) passes through the sample in order to avoid timing bias towards shorter
transmission times. A histogram of many such delay times gives the time-of-flight
distribution of the photons through the multiple scattering sample. In order to
correct for the effects of (strongly suppressed) after-pulses as well as of indiscriminate
noise, our data are deconvoluted with the input pulse, which is measured before and
after the measurement. Comparing both reference measurements, we are able to
identify laser drifts, e.g. in intensity and pulse width, easily. In this way, we obtain
the path length distribution of photons inside the sample, which can be compared
with theoretical predictions that are analytically available in the case of diffusion.
The determination of D and �abs is reasonably independent, as absorption is only
important in the decay of the intensity at long times, whereas the diffusion coefficient
determines the time delay of the photons first leaving the sample.

For the determination of the transport velocity, we independently measure the
turbidity ðkl�Þ�1 from the width of the coherent backscattering cone [19, 20].
Following the theoretical treatment by Akkermans et al. [21], the shape of the
cone can be fitted with the single parameter of kl*, which essentially describes the
width. We use a special setup designed to measure the backscattered light over a very
wide angular range of �60� to 85� with high accuracy [22]. This allows a proper
determination of the width, as the incoherent background following a Lambert–Beer
dependence [23] can be determined even for very wide cones. Due to the strong
scattering of the TiO2 particles, the samples have a reasonably high refractive index,
which leads to internal reflections of the backscattered light at the surface. This
effectively reduces the width of the backscattering cone [24], which has to be
corrected using the value of the effective refractive index of the sample. The
correction can be calculated using the energy coherent potential approximation
[25] given the size of the particles and their refractive index.

The samples themselves consist of ground TiO2 in its rutile structure, which is
commercially available from DuPont and Aldrich [18]. The size distribution of the
particles is determined using scanning electron microscopy, which usually yields a
polydispersity of 20%. The electron micrographs also show that the ground particles
are non-spherical [18]. For the different samples, the average particle size ranges from
220 to 540 nm.

3. Results

Previous experiments have shown that TiO2 particles with an average diameter of
250 nm show strong deviations from classical diffusion at packing fractions around
50% [18]. These time-of-flight distributions can be described by a phenomenological
theory based on a time-dependent diffusion coefficient [26, 27], as demanded by
localization theory [14]. Representative data and a fit with this phenomenological
theory are shown in figure 1. As can be seen, at long times the decrease
in transmission is markedly slower than the exponential (indicated by the

Experimental signatures of Anderson localization of light in three dimensions 2669



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f K
on

st
an

z]
 A

t: 
14

:2
7 

4 
D

ec
em

be
r 2

00
7 

dashed line). This shows that a process different from diffusion or absorption is at

work. To be more quantitative, a modified diffusion theory [8] can be used to fit the

data. The main input for this description is the time dependence of the diffusion

coefficient shown in the inset of figure 1. Here, D is constant up to a certain time, �loc
and then decreases as 1/t at long times. This behaviour of D(t) has also been found in

numerical simulations of a self-attracting random walk [28]. Furthermore, it can be

translated into a behaviour of hr2i, which corresponds to the intuitive description of

localization discussed above of a diffusive photon cloud that saturates at a length

scale corresponding to the localization length. The fit to this description shown in the

full line of figure 1 yields the following values for the absorption time,

�abs ¼ 2:0ð1Þ ns, the diffusion coefficient, D ¼ 15ð1Þm2 s�1 and the localization

length, Lloc ¼ 240ð10Þ mm. Together with a determination of kl* ¼ 2.5(3), one can

also directly calculate the transport velocity vT ¼ 0:63 c. This is consistent with the

speed of light divided by the Garnett refractive index [29], which indicates that

resonant scattering is not important in this particular sample. Below we will discuss

the dependence of vT on the different samples, which shows that localizing samples

can indeed also show resonant scattering.
A systematic study of the dependence of these deviations on the control

parameter kl* can then give information about the transition to Anderson localiza-

tion of light [8]. For instance, we have determined the critical value of kl* at

which the phase transition to localization takes place as kl�c ¼ 4:2ð2Þ. This is some-

what higher than the prediction by Ioffe and Regel [30] demanding unity for the

τloc

Figure 1. Time-of-flight measurements from a TiO2 sample with a value of kl* of 2.5.
At long times, there are clear deviations from an exponential decay as predicted by diffusion
with absorption (dashed blue line). The data can however be described by a temporally
varying diffusion coefficient (see inset), which is predicted for Anderson localization. This
results in the full red line in the plot. (The colour version of this figure is included in the online
version of the journal.)
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critical value. Note, however, that the Ioffe–Regel argument is based on dimensional
analysis and cannot predict constants of order one. Given this critical value for kl* it
is then also possible to determine the critical exponent of the localization length. This
turns out to be � ’ 0:45 [8], which indicates that first-order perturbation theory [3]
cannot be used to describe the transition. In that case the scaling theory of
localization [14] predicts a value of one in disagreement with the experiment. The
general prediction of scaling theory of � < 1, however, is fulfilled and in good
agreement with the expectation of 1/2 for a standard order parameter [31].
Numerical investigations on quasi-periodic lattices have, however, found values of
�¼ 1.5 [32], which are not compatible with these experiments and may be due to the
non-random nature of the lattice used in these investigations.

In the following, we will be concerned with experimental checks of the above
assertion that absorption and decreased transport velocity can be properly distin-
guished from localization.

3.1 Absorption

In order to determine the influence of absorption on our signal we investigate the
most localizing sample in more detail. Apart from localization, there are other effects
which might possibly give rise to a non-exponential tail in the time-of-flight
measurements. These include inhomogeneous layering, background illumination
[18] as well as induced fluorescence [33], which could give rise to higher intensities
at long times. An ideal way to exclude most of these experimental artefacts is to show
that only the turbidity kl* influences the appearance of a non-exponential tail and no
other sample properties are of influence. In order to do this, we have index-matched
the most localizing sample by filling the voids between the grains with dodecane.
Dodecane has a refractive index of �1.45 and thus strongly reduces the scattering
power of the particles, which increases kl* by roughly a factor of 10. Therefore, by
keeping the sample as well as the illumination intensity the same in the index-
matched experiments, one can rule out most of the above artefacts as the source of
the non-exponential tail. To show that inhomogeneous layering does not cause the
tail, we have previously shown that the illumination direction does not change the
results [18]. In addition, an index-matched experiment can be used as another
independent determination of the absorption length. Dodecane might lead to a
somewhat increased absorption, such that this experiment will yield an upper limit.

Figure 2 shows the results of a time-of-flight measurement of an index matched
sample. As can be seen, the data are well described by diffusive transport (full line),
which yields D ¼ 290ð10Þm2 s�1 and �abs ¼ 1:9ð1Þ ns. This is in good agreement with
the absorption length obtained from the pure sample using the phenomenological
localization theory discussed above. Therefore, the absorption can be directly
measured in time-of-flight data and does not give rise to the non-exponential tail
observed in strongly turbid samples. The deviations at very short times visible in
figure 2 are due to an increased rise time of the pulse in this experiment, which is not
accounted for in the deconvolution.

Thus, having two independent determinations of the absorption length, we can
perform the self-consistency check discussed above and measure the thickness

Experimental signatures of Anderson localization of light in three dimensions 2671
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dependence of static transmission. The result of this is shown in figure 3, where a
clear exponential suppression of transmission can be seen in the data. This is

obviously in disagreement with the expectation from pure diffusion which is
indicated in the green dotted line in the figure. However, we have shown that

samples with values of kl* above the transition also show exponentially decreasing
static transmission [7]. In that case however, the absorption length from time-of-

flight measurements can describe the data. This is shown in figure 3 by the dashed

and dashed-dotted lines. For the localizing sample studied here, these are still in
stark disagreement with the data, such that we again have to conclude that diffusion

and absorption cannot describe the data. The difference between the dashed and the
dashed-dotted lines is that the dashed line is obtained from the determination of the

absorption length using index-matching as shown in figure 2 above and thus presents
an upper limit of the absorption present in the sample. The dashed-dotted line is

obtained directly from the localization fit shown in figure 1 above. In order to

properly describe the data, we have to also include the exponential suppression of the
intensity due to localization, which is given by the localization length and which we

have determined from the fit in figure 1 above. This yields the full red line in figure 3,
which perfectly describes the data. The shaded area between the lines indicates the

uncertainty in the quantities determined in the fit, i.e. the absorption length and
the localization length. Note that therefore there is no adjustable parameter in the

description of the static transmission which is in perfect agreement with the data over

12 orders of magnitude. We therefore conclude that absorption does not influence

Figure 2. Time-of-flight distribution from a sample of TiO2 particles in dodecane. The TiO2

particles used in this sample are the same as those giving rise to the non-classical distribution
shown in figure 1. As can be seen, a reduction in refractive index contrast leads to a classical
time-of-flight distribution and an increase of kl*. Furthermore, the addition of dodecane can
only increase the absorption but should not greatly change the absorption time �abs. Thus, the
results from these measurements can be used as an upper limit to the absorption of
the localizing sample. (The colour version of this figure is included in the online version
of the journal.)
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our findings and the non-exponential tail in the time-resolved transmission data is in
good agreement with the suppression of static transmission.

3.2 Transport velocity

The second property we will look at more closely is the transport speed. As discussed
above, a slowing down in transport as expected by localization can also be obtained
from a reduction in transport velocity due to resonant scattering. In the reduction of
kl* one uses the property of the Mie resonances [12] to increase the scattering power
of the particles and thus reduce l*. Similarly, the resonances are at the origin of the
increased dwell time and thus the reduction in transport velocity is due to Mie
resonances [11]. Therefore, it might be thought that resonant scattering and turbidity
always go together and one could therefore expect a systematic dependence of vT on
kl*. This is, however, not the case, as l* is not only influenced by the resonances in
the form factor but also by those in the structure factor of the powder. This could
already be guessed by the result above that the most localizing sample did in fact not
show any significant reduction in transport velocity and could be described by the
Garnett refractive index [29]. Systematically, this is shown in figure 4, where we show
the dependence of both vT (open circles) and l* (full squares) on the particle diameter

Figure 3. Static transmission measurements as a function of thickness through the most
localizing sample. The dotted green line corresponds to the expectation of pure diffusion
theory. The dashed and dashed-dotted lines describe diffusion in the presence of absorption.
As is expected and also found experimentally, the static transmission decreases exponentially.
However, the absorption length is too large to describe the data properly. Here, the dashed-
dotted line corresponds to the value obtained from the localizing sample itself, whereas the
dashed line corresponds to that inferred from the index-matched sample. Only the full red line,
which also takes into account the decrease of intensity due to localization, describes the
experiments over the whole range and without any adjustable parameters. (The colour version
of this figure is included in the online version of the journal.)

Experimental signatures of Anderson localization of light in three dimensions 2673
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in the samples. As can be seen, the resonances in both quantities, as given by the

deviation from the classical expectations indicated by the solid and dashed lines,

respectively, do not match up. For example at particle sizes around 300 nm, there is

increased resonance scattering as evidenced by a decrease in vT but a decrease in

scattering power as shown by an increase in l*. This shows that effects of localization

due to a minimization of l* can be well separated from those of resonance scattering.
Now we can also show that the non-exponential tail in the time-resolved

transmission data is not due to a resonant scattering induced reduction in vT. As

shown above, a systematic dependence on kl* as shown for the non-exponential tail

[8, 18] cannot be obtained from a reduction in vT alone. However, it might still be

possible that the polydispersity of the samples leads to the presence of some slowed

photons which would give rise to a non-exponential tail. In that case though, samples

with a non-exponential tail should all show a mean vT which is not reduced.

Otherwise, particles in the tails of the size distribution would be non-resonant and

thus would lead to an increased vT. This would then not lead to an upwards tail and

thus could not be mistaken for localization. Figure 5 shows the transport velocity as

a function of the localization length. Thus, if the non-exponential tail would be

Figure 4. A comparison of the dependence of l* (full symbols) and vT (open symbols) on the
diameter of the scatterers. As can be seen, the resonances in the two properties do not match
perfectly. This is due to the fact that the reduction in transport velocity is only due to
resonances in the form factor, whereas the decrease in l* is due to a combination of the form
and structure factors. The dashed line indicates the value of vT obtained using the Garnett
refractive index [29], while the full line corresponds to an estimation of l* assuming the
scattering cross-section to be given by the size of the scatterer. (The colour version of this
figure is included in the online version of the journal.)
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caused by the tails in the particle size distribution, we would expect the points on the
right, where samples localize, to be higher. This is not the case and there are samples
showing a non-exponential tail which do have strongly reduced transport velocities.
Furthermore, the figure shows again that vT and localization are not correlated.
We find high and low values of vT both for localizing and non-localizing samples.

Thus, we have shown that a reduction in vT due to resonant scattering can be
obtained from our samples, but that it is quite distinct from the effects of localization
indicated by the non-exponential tail in time-of-flight measurements. Also a more
subtle argument based on the polydispersity of the samples can be ruled out by the
fact that resonance scattering can also be observed in localizing samples.

4. Conclusions

In conclusion, we have demonstrated that time-resolved transmission measurements
of light through extremely turbid media show strong deviations from diffusive
behaviour. These deviations are well described by the localization of photons to
length scales of the localization length. Usual experimental difficulties, such as
absorption and resonant scattering have been excluded as influencing our results.
In fact we can quantitatively determine both the relevant quantities and use them in

Figure 5. The transport velocity compared to the localization length as determined from
time-of-flight measurements. As can be seen, the two measures do not correlate, such that
localizing samples (with values of L=Lloc bigger than one) may have both high or low vT,
similar to non-localizing samples (with L ¼ Lloc).

Experimental signatures of Anderson localization of light in three dimensions 2675
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independent consistency checks showing that all of these results are in agreement
with an interpretation of the data in terms of Anderson localization of light.
Furthermore, using partial index-matching of the sample, we have shown that the
only parameter influencing the appearance of non-diffusive transport is the
turbidity kl*. This shows that experimental artefacts such as fluorescence,
inhomogeneous layering or background illumination can be ruled out as a source
of the non-exponential tail in the time-of-flight measurements.

In the future, the time-of-flight data should also be described by a less phenom-
enological theory, such as that by Skipetrov and van Tiggelen [34], which explicitly
describes open media. This also includes a quantitative measure of fluctuations, i.e.
speckle intensity distributions close to the critical point.
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