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Phase Transitions in Two-Dimensional Colloidal Systems

H. H. von Grünberg, P. Keim, and Georg Maret

Abstract

This chapter is an introduction to phase transitions in two-dimensional (2D)
systems. In contrast to three dimensions (3D), microscopic theories of melt-
ing exist in 2D. The most well known of them was developed more than 30
years ago by Kosterlitz, Thouless, Halperin, Nelson, and Young (KTHNY the-
ory). This theory predicts the unbinding of topological defects to break the
symmetry in two steps at two distinct temperatures. Dissociation of disloca-
tion pairs first melts the crystal into a still orientationally ordered (hexatic)
phase and, in the second step, dissociation of free dislocations causes the
system to go over to an isotropic fluid. Colloidal systems are used to verify
experimentally the predictions of KTHNY theory in detail as colloids provide
the possibility to visualize the change in symmetry on an “atomic” level by
simple video-microscopy. Elastic moduli like Young’s modulus and Frank’s
constant are deduced from microscopic trajectories of colloids in order to
quantify the softening of the 2D ensemble in the vicinity of the phase transi-
tions.

2.1
Introduction

The macroscopic physical properties of matter depend on the interactions
between atoms and/or molecules, on their spatial arrangement, and on tem-
perature. A – sometimes subtle – balance between internal energy and en-
tropy dictates the thermodynamic phase behavior of the bulk material. De-
pending on temperature, pressure or density, di=erent phases may appear
with completely di=erent responses to external factors: response functions
such as magnetic susceptibility, mechanical compressibility or shear modu-
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lus may di=er greatly in the high- and low-temperature phase. As a rule the
high-temperature phase is always more symmetric than the low-temperature
phase. In a fluid, for instance, the positions of the atoms are randomly dis-
tributed and no position is more likely than any other. At macroscopic scales
the fluid therefore looks the same at every position, indicating continuous
translational and orientational symmetry. By lowering the temperature T of
the fluid, the translational degrees of freedom of individual particles become
restricted. The system can lower its free energy F = U − TS by introducing
order. The corresponding loss of entropy S (that enters the free energy F

with a negative sign, thereby leading to an increase of free energy) is over-
compensated by the reduction of the internal energy U : potential energy
wins against thermal energy. Another well-known example is the para- to
ferromagnetic transition, where random, totally symmetric directions of the
elementary atomic moments in the high-T phase spontaneously align in the
magnetic low-T phase.

In both of our examples a symmetry is broken due to ordering: the mag-
netic moments start to orient parallel in magnetic systems so rotational in-
variance is broken, and atoms arrange in close-packed periodic structures
where continuous translational and orientational symmetries are broken in
favor of discrete ones. It is a general feature of phase transitions that high
symmetry in the high-temperature phase is broken in one or several steps
until a low-temperature phase with low symmetry occurs. Note, however, as
an exception, that the common transition between a liquid and a gas which
are both high-symmetry phases does not obey this principle, but above the
critical point these two phases with the same symmetry are indistinguishable
anyway, so we may consider both as a fluid.

The concept of macroscopic symmetry breaking does not tell us anything
about how a particular system manages to do so on the atomic scale. In fact,
the microscopic processes involved in both melting and freezing are still
poorly understood in many systems, despite their importance in the fabri-
cation and properties of most solid materials. As a general concept, during
heating of the system, increasing amounts of defects in the ordered phase
and dynamical (vibrational) modes provide the tools to restore symmetry.
The dynamical modes depend strongly on the phase itself and are connected
to the corresponding response functions, which are thus strongly dependent
on temperature. In a liquid, for instance, sound wave propagation is not
transverse but longitudinal since there is no shear modulus but there is a
compression modulus.

In order to calculate the properties of matter from a microscopic point of
view, one has to consider a huge amount of particles, typically of the order
1025 (e.g. in a liter of water). This, combined with the fact that one has to deal
with singularities, for instance to describe a jump in the specific heat, makes
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it impossible to solve the equations of state to describe phase transitions for
any three-dimensional model represented in Nature. Thus, phenomenologi-
cal theories have been developed, with the perhaps surprising outcome that
in the vicinity of the phase transition the microscopic interaction is ancillary.
This is because large fluctuations in the order parameter which describe the
magnitude of the symmetry-related order play an important role. The latter
leads to so-called universality classes of phase transitions, which are char-
acterized by a universal behavior irrespective of the microscopics, but rather
just depend on the degrees of freedom of the system and on the dimension of
the order parameter. This topic, which is most relevant for three-dimensional
systems, is far beyond the scope of this chapter.

In this chapter we rather focus on systems in two dimensions where the
situation is quite di=erent and in fact much better understood. In 2D, no
true long-range order exists due to long-wavelength fluctuations. This can
be seen most easily from an argument given by Peierls (1935) for the mag-
netic XY model. Let us assume that we have N moments per system size
L in one direction. For small relative rotations of neighboring magnetic mo-
ments δϕ around equilibrium, the interaction can be approximated by a har-
monic potential. If the magnetic moments interact only with a finite number
of neighbors, then the energy density of the mode with the longest wave-
length is ∝ (2π/N)2. Here the angle of rotation between nearest neighbors
is δϕ = 2π/N . Summation over all N magnetic moments, varying from 0 to
2π from one side of the sample to the other (see Fig. 2.1) leads to an energy
proportional to L(2π/L)2 in one dimension. It is L2(2π/L)2 in two dimen-
sions and L3(2π/L)2 in three dimensions. So in 1D and 2D energy does not
diverge with system size and the long-wavelength modes will be activated at
finite temperature.

A generalization of this argument for non-harmonic interactions was
given by Mermin and Wagner (1966) and for lattice theories by Mermin
(1968). The displacement �u(�R) of a particle diverges with distance �R as

〈[�u(�R) − �u(�R′)]2〉 ∼ ln |�R − �R′| for |�R − �R′| → ∞ (2.1)

where �R = n1�a1 + n2�a2 (ni ∈ N and �ai primitive translation vector) is an
ideal lattice site. Due to the weak logarithmic divergence, one can still talk
of a crystal. The discrete translational order is quasi-long-range whereas the

Fig. 2.1 One-dimensional wave of magnetic moments with lowest
wavelength. The orientation angle of the moments varies in the
range [0, 2π] over the system size L.
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discrete rotational symmetry is conserved. Therefore, unlike in 3D crystals,
the structure factor

S(�q) =
1
N

〈∑
α,α′

e−i�q(�rα−�rα′ )

〉
(2.2)

is not a set of delta peaks, but the peaks have a finite width and a particular
q-dependent shape, which will be further discussed below.

In 2D systems a microscopic theory of melting was developed in the 1970s
by Kosterlitz, Thouless, Halperin, Nelson, and Young (KTHNY theory). Melt-
ing is driven by the emergence – in the crystalline phase – of a class of topo-
logical defects, namely thermally activated dislocations pairs, which disso-
ciate at the melting temperature Tm (Kosterlitz and Thouless 1973; Young
1979). This gives rise to a softening of the crystal’s compressibility and shear
elasticity, and the melting transition is a second-order transition. Nelson and
Halperin predicted that the fluid phase above Tm still exhibits quasi-long-
range orientational order with a sixfold symmetric director field (Halperin
and Nelson 1978; Nelson and Halperin 1979). The orientational correlation
function in this phase decays algebraically, which is associated with a non-
vanishing elastic modulus of the orientational sti=ness, called Frank’s con-
stant, KA. Finally, at a temperature Ti > Tm the orientational symmetry is
broken upon the origination of a second class of topological defects: some of
the dislocations dissociate into free disclinations, leading to another second-
order transition and an exponential decay of the orientational correlation
function above Ti. Now, the fluid shows ordinary short-range rotational and
positional order as a characteristic of any isotropic liquid. The intermedi-
ate thermodynamic phase located between the isotropic liquid and the crys-
talline solid (which is unknown in 3D systems) is called hexatic. In order to
visualize the di=erent symmetries that we have just discussed, the structure
factors of all three phases are shown in Fig. 2.2.

KTHNY is not the only melting scenario proposed so far for 2D systems.
Alternative theoretical approaches such as grain-boundary-induced melt-
ing (Chui 1983; Kleinert 1983) or condensation of geometrical defects (Glaser
and Clark 1993) suggest first-order transitions, and in Lansac et al. (2006) the
e=ect of geometrical versus topological defects is discussed. Some numeri-
cal simulations indicate metastability of the hexatic phase (Chen et al. 1995;
Somer et al. 1997) or a first-order melting transition (Jaster 1999). The latter
is supposed to depend on finite-size e=ects (Mak 2006) in systems with hard-
core interaction where fluctuations are believed to be very important. On the
other hand, the e=ects of fluctuations seem less relevant in systems with a
long-range pair potential. Indeed, recent simulations with dipole–dipole in-
teractions clearly show second-order behavior (Lin et al. 2006).
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Fig. 2.2 Structure factor S(q) of a colloidal system at various tem-
peratures: (a) isotropic liquid, (b) hexatic phase, and (c) crystal (on
the axes a = 1/

√
ρ is the average interparticle distance, with ρ

being the 2D density).

This chapter deals with phase transitions in two-dimensional systems. In
Section 2.2 we outline the theory of dislocation-mediated melting. In Section
2.3 di=erent experiments to verify the KTHNY theory are discussed and the
unique advantages of colloidal 2D systems are highlighted. We focus on col-
loidal systems in Section 2.4 as they provide the possibility to visualize the
ensemble at an “atomic” level. Trajectories of colloids can be recorded using
video-microscopy and the change in symmetry at the phase transition can
be observed directly. In particular, we emphasize experiments with colloids
under magnetic dipole–dipole interactions confined at an absolutely smooth
and flat surface because they provide the unique possibility to tune the sys-
tem temperature in situ and to reach true thermodynamic equilibrium. This
system turns out to be an ideal realization of a two-dimensional ensemble
and the pair potential is known precisely. Due to these features these experi-
ments have shown the most complete and quantitative evidence for KTHNY
melting so far.

2.2
Theoretical Background

2.2.1
Dislocations and Disclinations in Two-Dimensional Crystals

A dislocation in a two-dimensional crystal is a defect that arises from the
insertion of half lattice lines into the otherwise perfect lattice. Due to these
lines a single dislocation cannot be made to disappear by any continuous
transformation. This is why a dislocation is a topological defect. Figure 2.3
shows a dislocation in a square and in a triangular lattice, with the thick
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dashed lines representing the inserted half lattice lines (two lines in the case
of a hexagonal crystal due to symmetry, one line for a square one). From the
sketch it is also evident how one can come back to the regular lattice: cutting
the crystal along the hatched line, one has to relax the distorted lattice by
shifting the whole lattice on one side of the cut by the vector �b such that
eventually the sites A and A′, B and B′, and C and C′ become connected
again. This way of visualizing dislocations in solids is known as the Volterra
construction, and the cut is termed the “Volterra cut” (Chaikin and Lubensky
1995).

The vector �b is called the Burgers vector and is introduced to index the
strength and orientation of a dislocation. A simple way to determine the
Burgers vector of a dislocation is to draw a loop along a path that encloses
the dislocation. This loop will contain an extra step corresponding to a direct
lattice vector. This vector is the Burgers vector. In Fig. 2.3 such a Burgers cir-
cuit is completed following four steps along nearest-neighbor bonds in each
of the lattice directions on a path around the dislocation. From this construc-
tion it is then clear that inserting two parallel half lines instead of one, one

Fig. 2.3 Dislocations on square and triangular lattices arising from insertion of half lattice
lines (thick dashed line with a circle indicating the tip of the inserted half line). The dislo-
cation is characterized by a Burgers vector �b, which can be determined by considering a
loop enclosing the dislocation. For the square lattice (left), starting from site S one follows
the same number of steps along nearest-neighbor bonds that are made in each of the lat-
tice directions in completing the circuit. The path ends at site E, which is not identical to
S. Then �b is the vector pointing from S to E. For the triangular lattice (right), �b is obtained
in the same way. Sixfold coordinated sites are plotted as filled circles, the sevenfold coor-
dinated site as a square, and the fivefold coordinated site as a triangle. The regular lattice
can be restored by cutting the crystal along the hatched bar putting A next to A′, B next to
B′, and so forth.



46 2 Phase Transitions in Two-Dimensional Colloidal Systems

would obtain a Burgers vector that is twice as long. In other words, a Burgers
vector is a multiple of a direct lattice vector, with the multiplicity factor cor-
responding to the number of inserted parallel half lines. As Burgers vectors
with multiplicity factors greater than one hardly ever occur in our systems,
we will henceforth consider only dislocations with Burgers vectors of length
a0, where a0 is the lattice constant. Then due to the symmetry of the lattice,
there are only three Burgers vectors possible on a triangular lattice, and just
two on a square lattice, one for each basic lattice vector. In the following we
consider only the triangular lattice since it is the most densely packed one in
2D and favored by Nature.

The well-known Voronoi construction is used to determine the number
of nearest neighbors of each site. This construction allows us to generate a
mosaic from a given set of lattice sites. It assigns to each site a cell which is
defined as the set of all points that are at least as close to this site as to any
other site. Since the resulting Voronoi tessellation is an area-filling cellular
structure, it allows us to introduce the notion of neighborhood, i.e. two sites
are neighboring if their cells share at least one side. An example of such a
Voronoi construction is given in Fig. 2.4b taken from Keim (2005). By means
of such a Voronoi tessellation one can now determine the neighbor statistics
for a triangular lattice hosting a dislocation. Figure 2.3 shows that the last
site at the end of the inserted half line has only five rather than the usual six
nearest neighbors. Next to this site, there is a sevenfold coordinated site. So,
a dislocation can be viewed as a special kind of defect pair, a fivefold site be-
ing nearest neighbor to a sevenfold coordinated lattice site, where the vector
�r57 pointing along the bond connecting these two sites is almost perpendic-
ular to the Burgers vector. A micrograph of a real two-dimensional crystal
showing a dislocation is given in Fig. 2.4a.

Since the distortion of the lattice near a dislocation costs elastic energy, the
probability of finding a dislocation in a crystal increases with temperature.
This means that, even in crystals that are defect-free at zero temperature,
dislocations have a chance of being formed at finite temperature. How is
this sudden occurrence possible if the formation of a dislocation requires
insertion of half a lattice line? The answer to this question is that single
dislocations will never spontaneously form, but that dislocations will first
appear in the form of dislocation pairs, which can then dissociate into single
dislocations. And such pairs can evolve from local lattice displacements, as
we now explain by means of Fig. 2.5.

Starting in Fig. 2.5 (left) from a perfect triangular lattice the sites A′ and B′

are displaced along a lattice line by a vector �d, while their nearest neighbors
A and B on a line parallel to the first line are displaced by −�d. The distance
rBB′ between B and B′ thus increases from a0 to
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Fig. 2.4 (a) Micrograph (420 × 310 µm) of a colloidal crystal showing three isolated dis-
locations: the black squares mark the sevenfold coordinated colloids and the triangles
mark the fivefold coordinated particles representing the end of the inserted half lattice
lines (white solid lines). (b) By means of the Voronoi construction, the same area of the
crystal is divided into cells, which allows us to determine the number of nearest neighbors
of each particle.

rBB′ =
√

a2
0 + (2d)2 + 2da0

while the distance between A and A′ reduces from
√

3 a0 to

rAA′ =
√

3a2
0 + (2d)2 − 6da0

A Voronoi construction recognizes two sites as nearest neighbors if their dis-
tance is smaller than

√
7 a0/2. Once d > a0/4 we find rAA′ <

√
7 a0/2 and

rBB′ >
√

7 a0/2, meaning that the pair B and B′ then ceases to be near-
est neighbors, while A and A′ are now allowed to become nearest neighbors.
Hence, the e=ect of this coordinated shift through d is that B and B′ have lost
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Fig. 2.5 Schematic drawing illustrating the formation and dissocia-
tion of dislocation pairs – see text. As in Fig. 2.3, sevenfold coordi-
nated sites are plotted as squares, and fivefold coordinated sites as
triangles.

a neighbor, and A and A′ have gained one, and that taken together two (5, 7)
pairs have formed. This dislocation pair is bound at the smallest dislocation
pair distance possible. If su;cient thermal energy is provided, the disloca-
tion pair can be excited to a higher bound state in which the pair distance
is larger, as depicted in Fig. 2.5 (right). Eventually this pair can completely
dissociate into two dislocations. In this way two single dislocations are gen-
erated without there being the need to insert half lines. Note that the two
dislocations in Fig. 2.5 have opposite Burgers vectors whose sum is zero.
More generally we may conclude that a collection of dislocations whose sum
of Burgers vectors vanishes can be obtained through a continuous transfor-
mation starting from a regular lattice.

With the decomposition of pairs into single dislocations, the decay of or-
der is not yet completed: the next step that may occur if enough thermal
energy is available is a dissociation of a single dislocation into an isolated
fivefold coordinated site and another sevenfold coordinated site. These de-
fects are disclinations. They form another class of topological defects in 2D
solids. While for a dislocation the two sides of the Volterra cut have to be
translated relative to each other, a disclination is obtained if the two sides are
twisted relative to each other. For a triangular lattice there are just two angles
through which the two sides can be rotated and still glued together, namely
+π/3 and −π/3, resulting in the structures of Figs. 2.6 (a) and (c). Note that
the positive disclination in (c) has a fivefold coordinated site at the core, while
the negative disclination in (a) has a site that is sevenfold coordinated. Figure
2.6 (b), taken from Somer et al. (1997), shows a 2D system with four widely
spaced disclinations, two positive ones in the upper left and lower right cor-
ners, and two negative ones in the upper right and lower left corners. It is
evident that what has remained of the crystalline order in Fig. 2.3 (right) has
now been completely destroyed.
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Fig. 2.6 (a) A −π/3 disclination in a triangular crystal with its sev-
enfold coordinated site in the center. (b) A system with four widely
spaced disclinations (two +π/3 and two −π/3 disclinations). (c) A
+π/3 disclination with its fivefold coordinated site.

In summary, we note that neither individual disclinations nor single dis-
locations can be produced through any kind of continuous transformation
since they are topological defects. However, they can be produced via appro-
priately formed pairs: dislocations from (5, 7, 5, 7) clusters, and disclinations
from (5, 7) dislocations. This natural production pathway suggests that with
increasing temperature first dislocations and then disclinations will form in
the crystal. The first defect type destroys the translational order [as we can
predict from the inserted half line in Fig. 2.3 (right)] and transforms the crys-
tal into what is known as the “hexatic phase”, while occurrence of the second
type of defect results in the destruction of the orientational order, leading to a
phase transition into the fluid phase. We will elaborate on that further below.

2.2.2
Elastic Constants in Two-Dimensional Systems

In 2D hexagonal crystals there are only two independent elastic constants
and the elastic free-energy density F can be written as

F = 1
2λuiiujj + µuijuij (2.3)

where uij = (∂xi
uj + ∂xj

ui)/2 is the usual strain tensor derived from the
displacement field with components ui. Here we use the usual summation
convention. In Eq. (2.3) λ and µ are called the Lamé coe;cients. Decom-
posing uij into a scalar and a symmetric traceless tensor, we may rewrite
Eq. (2.3) as

F = 1
2Bu2

ii + µ(uij − 1
2δijukk)2 (2.4)
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with B = λ + µ. The first term in this expression quantifies the elastic en-
ergy connected with pure area changes and, accordingly, B is called the bulk
modulus. The second term corresponds to distortions in which the area of
the crystal does not change, only its form, something that is characteristic of
a pure shear deformation. Therefore, µ is termed the shear modulus. Equa-
tion (2.4) leads us to the stress tensor

σij =
∂F

∂uij
= Bukkδij + 2µ(uij − 1

2δijukk) (2.5)

which can be inverted to give the strain in terms of the stress:

uij =
1

4B
σkkδij +

1
2µ

(σij − 1
2δijσkk) (2.6)

Now let us suppose that a 2D hexagonal crystal is subjected to a posi-
tive tension with a force per unit length T exerted across opposite sides, i.e.
fy = T dl is the force applied to the side of the crystal with normal in the
�ey direction and fy = −T dl is the force applied to the opposite side with
normal −�ey . Then σij = Tδiyδjy and we obtain from Eq. (2.6)

uyy =
(

1
4B

+
1
4µ

)
T (2.7)

uxx =
(

1
4B

− 1
4µ

)
T

uyx = uxy = 0

(2.8)

To cast this into a form similar to Hooke’s law, we introduce a constant K

such that Eq. (2.7) can be rewritten as T = Kuyy with

K =
(

1
4B

+
1
4µ

)−1

=
4Bµ

B + µ
=

4µ(λ + µ)
λ + 2µ

(2.9)

This constant K is Young’s modulus, which is nothing but the elastic con-
stant that couples a uniaxial tension to the strain along the same direction.
On the other hand, the strain along the normal direction determines what is
known as Poisson’s ratio, σ = −uxx/uyy . Hence, from Eqs. (2.7) and (2.8),

σ =
B − µ

B + µ
=

λ

λ + 2µ
(2.10)

As we will see further below, for temperatures slightly above the melt-
ing temperature of the crystal, some order may remain even though the full
translational symmetry has been destroyed. This residual order is an orienta-
tional one and characterizes the hexatic phase; it is described by a bond angle
field θ(�r) and controlled by a Hamiltonian of the form

HA = 1
2KA(T )

∫
|∇θ(�r)|2 d2r (2.11)
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with Frank’s constant KA(T ) as yet another elastic (scalar) constant relevant
in the hexatic phase. In the fluid phase, finally, we have the compressibility
as the only elastic constant.

2.2.3
Defects and Energies

We next calculate the energy for a single dislocation in a 2D crystal with
triangular symmetry. To this end, we first need to know the displacement
field �u near the dislocation. In equilibrium the internal force fi = ∂xj

σij on
each area element of the solid must be zero. Hence, from Eq. (2.5),

λ
∂ukk

∂xi
+ 2µ

∂uij

∂xj
= 0 (2.12)

for i ∈ (x, y). As discussed in Section 2.2, a dislocation located at site �r is
characterized by the Burgers circuit, i.e. by the amount by which a contour
integral of the displacement field taken around the dislocation fails to close,∮

d�u = a0
�b(�r) (2.13)

where�b(�r) is one of the three dimensionless Burgers vectors possible on a tri-
angular lattice. The displacement field �u is then a solution to the equilibrium
equations (2.12), subject to the Burgers circuit constraint given in Eq. (2.13).
For a dislocation�b = b�ex at the origin, the solution to this problem (Chaikin
and Lubensky 1995; Nabarro 1967) reads

ux =
ba0

2π

(
φ +

K

8µ
sin 2φ

)

uy = −ba0

2π

(
µ

λ + 2µ
ln r +

K

8µ
cos 2φ

) (2.14)

with (r, φ) being the usual cylindrical coordinates. One easily verifies that
Eq. (2.13) is satisfied (

∫
dux = ba0 and

∫
duy = 0). From this solution one

can then obtain the associated stress tensor needed to eventually compute
the energy of a dislocation,

Eel = 1
2

∫
d2r σijuij (2.15)

resulting in

E = Eel + Ec =
a2
0b

2K

8π
ln
(

R

a

)
+ Ec (2.16)

where we have restricted r to radii greater than a, the dislocation core radius,
and smaller than R, the linear dimension of the sample. The calculation of
the energy at the core of the defect would require some microscopic model
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and is generally quite complicated. We therefore inserted some unspecified
constant, the dislocation core energy Ec.

Repeating this calculation for two dislocations, �b1 = −�b2 = �b, a distance
�r12 apart from each other, we obtain

E =
a2
0b

2K

4π
ln
(r12

a

)
− a2

0K

4π

(�b · �r12)2

r2
12

+ 2Ec (2.17)

We first note that the logarithmic divergence with system size of the expres-
sion in Eq. (2.16) disappears when two dislocations interact. This is due to the
fact that we have considered a dislocation pair of antisymmetric Burgers vec-
tors, which according to our considerations in Section 2.2 can be obtained by
a continuous transformation starting from a regular lattice. Such a pair there-
fore cannot produce any kind of divergence with system size. More generally
we may expect that there will be no ln R divergence in a system with many
dislocations as long as

∑
α
�b(�rα) = 0. Secondly, we learn from Eq. (2.17) that

two dislocations attract each other, obviously because this lowers the strain
energy of the system. The second term in Eq. (2.17) is an angular term fa-
voring a relative orientation of the two dislocations such that �r12 becomes
aligned to a vector perpendicular to�b.

Equation (2.17) can be generalized to an arbitrary distribution of disloca-
tions at positions �rα,

HD = −a2
0K

4π

1
2

∑
α�=α′

[
�b(�rα) ·�b(�rα′) ln

(
Rα,α′

a

)

− [�b(�rα) · �Rα,α′ ] [�b(�rα′) · �Rα,α′ ]
R2

α,α′

]
+ Ec

∑
α

|�b(�rα)|2 (2.18)

with �Rα,α′ = �rα − �rα. This Hamiltonian is called the “dislocation Hamil-
tonian” in the following. The neutrality of the dislocation gas is understood,
i.e.

∑
α
�b(�rα) = 0. Note that, in principle, also triplets of appropriately cho-

sen Burgers vectors can add up to zero and would thus be compatible with
the neutrality condition. However, these so-called higher complexions are
neglected in Eq. (2.18), which describes a gas of only pairwise interacting
dislocations. Note also that

∑
α |�b(�rα)|2 is just the number of dislocations in

the system.
Equation (2.18) is still not the most general case possible. At su;ciently

high temperatures, both disclinations and dislocations are present in the sys-
tem, and each type interacts not only with its own class of defects but also
with the other defect class. So, we consider an arbitrary distribution of dislo-
cations and disclinations. As discussed in Section 2.2, a disclination is char-
acterized by the angles through which the two sides of the Volterra cut can
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be rotated. In a hexagonal lattice, these are the angles ±π/3. A distribution
of disclinations is now best represented by a disclination density

s(�r) =
∑
α

sαδ(�r − �rα) (2.19)

where sα = ±1, while a distribution of dislocations is described by a vector
dislocation density

�b(�r) =
∑
α

�bαδ(�r − �rα) (2.20)

with the Burgers vectors �bα for dislocations at positions �rα. The Fourier
transforms of these quantities are

s(�q) =
∑
α

sαe−i�q�rα

�b(�q) =
∑
α

�bαe−i�q�rα

(2.21)

We can now define a total defect density by adding the disclination density
(which can be considered as “free” disclinations) and a contribution stem-
ming from the dislocations (which can be considered as “bound” disclina-
tions),

s̃(�q) = 1
3πs(�q) + ia0[qybx(�q) − qxby(�q)] (2.22)

Note that now π/3 and a0 are to be inserted since both defect variables sα

and �bα are chosen such that their modulus is unity. The generalization of
Eq. (2.13) now reads∮

Γ

dui = a0

∑
α

bαj

∮
Γ

dθ = 1
3π

∑
α

sα (2.23)

where the sum is over all �bα and sα enclosed by Γ. The energy associated
with this general defect distribution can be calculated once the strain and
stress field is obtained from solving Eq. (2.12) together with (2.23). One
finds (Chaikin and Lubensky 1995)

HDD = 1
2K

∫
d2q

(2π)2
1
q4

s̃(�q)s̃(−�q) + Ec

∑
α

b2
α + Es

∑
α

s2
α (2.24)

as the Hamiltonian of a mixed system of dislocations and disclinations. Here
Es is the disclination core energy. From this expression Eq. (2.16) is recov-
ered if s(�r) is set to zero and just one Burgers vector is assumed to be placed
at the origin. In addition, the dislocation Hamiltonian in Eq. (2.18) is repro-
duced by setting s(�r) = 0. On the other hand, setting�b(�r) = 0 in Eqs. (2.20)
and (2.22), and considering just one single disclination at the origin, one ob-
tains an R2 divergence with the system size R, which again, as in the case
of dislocations, disappears if two oppositely charged disclinations are consid-
ered.
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In the hexatic phase, i.e. the phase intervening between the crystal and the
isotropic phase, free disclinations become energetically possible. The inter-
action between these disclinations is screened by the dislocations. Applying
the Debye–Hückel approximation, it is now possible to integrate out the dis-
location degrees of freedom in Eq. (2.24), and to replace Eq. (2.24) by a pure
disclination Hamiltonian but with e=ective disclination–disclination interac-
tions (Chaikin and Lubensky 1995; Nelson and Halperin 1979). One obtains

Hdisc = KA

(π

3

)2
∫

d2q

(2π)2
1
q2

s(�q)s(−�q) + Es

∑
α

s2
α (2.25)

with the coupling constant

KA =
2Eca

2

a2
0

(2.26)

The appearance of the dislocation core energy and radius in this constant
– which can be interpreted as a Frank constant – is all that remains of the
dislocation degrees of freedom. Equation (2.25) in direct space reads

Hdisc = −KA

2π

(π

3

)2 1
2

∑
α�=α′

sαsα′ ln
(

Rα,α′

as

)
+ Es

∑
α

s2
α (2.27)

where �Rα,α′ = �rα − �rα and as is the disclination core radius. So, neglecting
for a moment the angular term in Eq. (2.17), we may summarize this section
by observing that both a dislocation pair (�b1 = −�b2) and a disclination pair
(s1 = −s2) attract each other via a pair potential of the form

βv(r) = c ln(r/a) (2.28)

(β = 1/kBT ) where

c =
βKa2

0

4π
for a dislocation pair (2.29)

c =
βKAπ

18
for a disclination pair (2.30)

The pair potential (2.28) is used in the next section to estimate the mean
distance between defect pairs.

2.2.4
Melting in Two Stages

As already mentioned at the end of Section 2.2 the key idea of the KTHNY
melting theory is that the unbinding of defect pairs is responsible for the
melting. More specifically, the unbinding of dislocation pairs produces a first
transition at Tm, and the subsequent unbinding of dislocations into disclina-
tions produces a second transition at a somewhat higher temperature Ti.
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The presence of free dislocations in the system is not compatible with the
translational symmetry. So, at temperatures Ti > T > Tm where free dislo-
cations (but not yet free disclinations) can exist, the crystalline order is de-
stroyed. The system has undergone a phase transition from solid to another
phase, the hexatic phase. This phase is characterized by an algebraic decay of
the orientational order parameter but an exponential short-range decay of the
translational order parameter. Then for T > Ti free disclinations can occur
which now destroy the residual orientational order. The system has entered
into the isotropic fluid phase in which we have an exponential decay of both
orientational and translational order parameter.

On the basis of this qualitative picture we can now estimate the two
temperatures Tm and Ti using the defect pair interaction Hamiltonian in
Eq. (2.28) to calculate the mean quadratic distance between defect pairs,

〈r2〉 =
∫

d2r r2e−βv(r)∫
d2r e−βv(r)

=
2 − c

4 − c
a2 (2.31)

where we have had to assume that c > 4. For c → 4, the expression diverges,
〈r2〉 → ∞, meaning that the defect pair dissociates. Hence, the dislocation
unbinding temperature for a dislocation pair results from

βKa2
0

4π
→ 4 (2.32)

or, equivalently,

kBTm =
Ka2

0

16π
(2.33)

where we used Eq. (2.29). The unbinding temperature for a disclination pair
follows from Eqs. (2.31) and (2.30),

βKAπ

18
→ 4 (2.34)

or

kBTi =
KAπ

72
(2.35)

In other words, from Eq. (2.32),

lim
T→T−

m

K(T )a2
0

kBT
= 16π (2.36)

and from Eq. (2.34),

lim
T→T−

i

KA(T )
kBT

=
72
π

(2.37)

where the negative sign as the superscript index of Tm and Ti serves as a re-
minder of the fact that both limits are approached from below, reflecting the
pair stability condition c > 4. Both equations link a transition temperature to
those elastic constants which are characteristic of the phases involved. These
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equations define the point where microscopic details of the defect interaction
are transformed into a prediction based purely on macroscopic information;
they are important predictions of the KTHNY theory as their derivation is
based on the essential KTHNY idea of defect unbinding. Equation (2.37)
should be seen in connection with Eq. (2.26), and is correct as it stands.
Equation (2.36), however, needs a further modification discussed in the next
section.

2.2.5
The Halperin–Nelson Recursion Relations

The physical picture underlying Eq. (2.36) is that on approaching Tm the
crystal softens until K(T )/T is small enough to allow dislocations to un-
bind. The crystal melts. The temperature dependence of K(T ) can result
partly from higher anharmonic terms in the crystal phonon Hamiltonian, an
e=ect that is called “thermal softening” [see Section 7.7 in Kleinert (1989)].
However, the elastic constants can also and additionally be softened by dis-
locations. So, the role of the Young’s modulus here is twofold: it determines
the dislocation unbinding, but is itself influenced by the system of interact-
ing dislocations. This very fact suggests that recursion relations are needed
to obtain the elastic constants in the presence of a gas of interacting disloca-
tions.

These recursion relations have been derived by Nelson and Halperin
(1979). These authors decompose the strain tensor into a smoothly varying
part φij(�r) for the perfect crystal and a singular part using

ij (�r) which is due to
the dislocations, and they write the full system Hamiltonian H as a sum of
Eqs. (2.3) and (2.18),

H = H0 + HD = 1
2

∫
d2r (λφ2

ii + 2µφijφij) + HD (2.38)

where the perfect crystal part H0 resorts just to φij(�r). For a system that is
thought to be defect-free, H0(λ, µ) depends on λ and µ. The idea now is to
renormalize both constants λ → λR and µ → µR such that H0(λ, µ) + HD

can be replaced by a single Hamiltonian H0(λR, µR) for an ersatz system
without dislocations but with somewhat softer elastic constants. The e=ect
of the dislocations is thus absorbed into the elastic constants. This defect-
mediated softening adds to the thermal softening.

Of crucial importance in this theory is the dislocation core energy Ec,
appearing in the last term of Eq. (2.18), or, more precisely, the quantity
y = e−Ec/kBT . To quadratic order in y and for a triangular lattice, Halperin
and Nelson (1978) derived coupled di=erential equations for K(l), µ(l), λ(l)
and y(l), all four quantities expressed as a function of the renormalization
flow variable l. The value l = 0 corresponds to the unrenormalized values,
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l → ∞ to the renormalized ones. Here we repeat only the renormalization
group equations for K(l) and y(l),

dK−1(l)
dl

=
3
2
πy2eK(l)/8πI0

(
K(l)
8π

)
− 3

4
πy2eK(l)/8πI1

(
K(l)
8π

)

dy(l)
dl

=
(

2 − K

8π

)
y(l) + 2πy2eK(l)/16πI0

(
K(l)
8π

) (2.39)

where I0 and I1 are modified Bessel functions. Let us discuss the solutions
to these di=erential equations considering a special 2D system which can be
realized by colloidal particles and which will be properly presented and dis-
cussed in the next sections. We consider a 2D system of particles interacting
with a pair potential of the form βv(r) = Γ/(r/dnn)3 [see Eq. (2.58)] where
dnn is the nearest-neighbor distance and Γ is the interaction strength para-
meter, inversely proportional to the temperature T . For T → 0 the Young’s
modulus for this system can be calculated (Zanghellini et al. 2005) yielding

βa2
0K = 1.258Γ (2.40)

Assuming this value for K and furthermore a core energy of Ec = 5.4kBT

as the l = 0 values we can now solve Eq. (2.39) numerically, for a number
of di=erent temperatures as done in Fig. 2.7 (a). We observe that for low
temperatures, i.e. if Γ > 60, y vanishes for l → ∞, and we obtain 1/KR =
1/K(∞), which is always higher than 1/K(0). This means that the crystal in
our ersatz system has no defects but is somewhat softer since KR < K(0).
For Γ < 60, the fugacity no longer vanishes and renormalization becomes
impossible. This marks the point where the crystal is no longer stable against
free dislocations – it melts. Analyzing Eq. (2.39) one can show that the so-
called separatrix (line separating the stable from the unstable solutions) will
always terminate at a2

0βKR = 16π; see Fig. 2.7 (a).
With this latter result we can come back to Eq. (2.36). The unbinding tem-

perature for two dislocations in the presence of a gas of interacting disloca-
tions is quantified by Eq. (2.36) but with K replaced by KR,

lim
T→T−

m

KR(T )a2
0

kBT
= 16π (2.41)

This is a universal relationship which should be true for all 2D systems that
show a defect-mediated melting, no matter what form of interaction they are
characterized by. The same result is obtained by balancing the energy and
entropy of an isolated dislocation as was done by Kosterlitz (1974). Equation
(2.41) is therefore called the Kosterlitz–Thouless criterion for melting. Since
we can expect the Lamé coe;cient µ to be zero above Tm, KR(T ) should be
discontinuous at the melting temperature.

Figure 2.7 (a) provides us with KR versus Γ. However, we have to take
account of thermal softening as well. Figure 2.7 (b) shows the Young’s mod-
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Fig. 2.7 (a) Solutions to the Halperin–Nelson renormalization group equations in
Eq. (2.39) for a 2D system with 1/r3 pair interactions. Γ can be considered as inverse
temperature. Each line corresponds to one temperature and shows (y(l), K−1(l)) as a
function of l starting from (y(0), K−1(0)). For temperatures where y(l) vanishes in the
limit l → ∞, the crystal is stable against dislocation unbinding, while it is unstable for
temperatures where y(l) → ∞ for l → ∞. The melting temperature (here Γ ≈ 60)
belongs to the line separating both regimes (the “separatrix”).
(b) Young’s modulus as a function of Γ for a system with 1/r3 and 1/r pair interactions.
In both systems Young’s modulus has been approximated using elastic constants from
(i) zero-temperature calculation (dashed line), (ii) finite-temperature simulation (thin solid
line), and (iii) integrating the KTHNY equations (2.39) (thick solid line). The di=erence
between the curves (i) and (ii) shows the e=ect of thermal softening, while the di=erence
between the curves (ii) and (iii) is produced by a defect-mediated softening. Simulation
data for 1/r3 are marked with filled circles.

ulus for a warm and defect-free crystal with pair interaction 1/r3 as obtained
from Monte Carlo simulations (Zanghellini et al. 2005) (thin solid line). The
results for finite temperature are markedly di=erent from the T = 0 approx-
imation (2.40) used above. Taking these finite-temperature results as initial
conditions for solving Eq. (2.39) (and assuming Ec = 5.7kBT ), one obtains
KR(Γ) with the correct low-temperature behavior (thick solid line in Fig. 2.7
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b). It passes through 16π at Γ = 60. Note the considerable extra softening
produced by the defects near the unbinding temperature (di=erence between
thick solid and thin solid lines). Figure 2.7 (bottom) also shows the corre-
sponding results for a system with 1/r interactions as realized for instance
by electrons on liquid helium.

We observe that a similar renormalization procedure for the Frank con-
stant in Eq. (2.37) is not needed. Here it is not the other disclinations but the
dislocations that are assumed to a=ect the Frank constant, and their screen-
ing e=ect is already taken into account in going from Eq. (2.24) to the e=ec-
tive Hamiltonian in (2.25), with the e=ect that KA is given by Eq. (2.26). We
should finally also remark that the Frank constant should be discontinuous
at Ti, just as KR(T ) is for T > Tm.

2.2.6
Correlation Functions

The Translational Order

Let us now consider the order in the crystalline phase, i.e. for T < Tm. Crystals
in 2D systems are well studied, mainly in the context of problems in surface
science. Many monolayers are approximate realizations of systems in math-
ematical two dimensions – see Sections 4.2 and 4.3 in Bruch et al. (1997).
Perhaps the most spectacular feature of 2D crystals is the fact that the mean
square displacement 〈|�u(�R)|2〉 diverges, with �u(�R) being the displacement
of a particle from its lattice site �R. It is therefore more fruitful to study the
mean square relative displacement

Wij = 〈∆ui(�R)∆uj(�R)〉 (2.42)

with ∆ui(�R) = ui(�R)−ui(�0). For large separations R the asymptotic evalua-
tion of this quantity gives the simple expression (Nelson and Halperin 1979;
Bruch et al. 1997)

Wij = ηa2
0δij ln

(
R

a

)
(2.43)

with

η =
kBT

πµRa2
0

3µR + λR

2µR + λR
(2.44)

The logarithmic divergence with R in Eq. (2.43) is typical of 2D crystals, and
is not found in 3D crystals. With Eq. (2.43), one can now estimate the Debye–
Waller correlation function C�q(�R) appearing in the structure factor

S(�q) =
∑

�R

ei�q �RC�q(�R) (2.45)

which is approximately given by

C�q(�R) ≈ e−
1
2 qiqjWij (2.46)
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Inserting Eq. (2.43) into this equation yields

C�q(�R) ≈
( a

R

)q2a2
0η/2

(2.47)

In 3D crystals S(�q) has a set of δ-function Bragg peaks, occurring at the
reciprocal lattice vectors �G, and due to the finiteness of �u(�R) the Debye–
Waller function C�G(�R) tends to non-zero constants at large �R. This is not
so in 2D. Here, �u(�R) is not finite and C�G(�R) tends algebraically to zero for
large R like ∼ R−ηG with an exponent ηG = ηG2a2

0/2. Also the δ-functions
of the Bragg peaks in 3D crystals are in 2D crystals replaced by power-law
singularities ∼ |�q − �G|−2+ηG .

The Debye–Waller function C�G(�R) can be related to the envelope function
of the pair distribution function

g(r) =
V

N2

〈∑
i, j �=i

δ(�r − �rij)

〉
(2.48)

and is thus easy to observe also in real space.
For T > Tm one observes a di=erent decay behavior. Here C�G(�R) decays

exponentially ∼ e−R/ξ. We note that one can get access to the important elas-
tic constants via η from Eq. (2.44) either by analyzing the mean square rela-
tive displacement in Eq. (2.42) or, alternatively, by studying the decay behav-
ior of C�G(�R) [by analyzing g(r) or S(q)]. For T → T−

m the index η also goes
to a universal value [ just like the Young’s modulus in Eq. (2.36)] and can in
principle also be used to check the KTHNY melting scenario [see Zanghellini
et al. (2005)].

In summary, the decay of C�G(�R) to zero is a signature of the fact that there
is now true translational order in 2D crystals. Nevertheless, it is just a slow
power-law decay which is markedly di=erent from the exponential decay one
finds for T > Tm. This allows us to speak of a quasi-long-range order and
still to distinguish the crystalline from the two other phases.

The Orientational Order

The bond orientational order in triangular lattices is usually quantified using
the following orientational correlation function:

g6(r) = 〈ψ6(�r)ψ∗
6(�0)〉 (2.49)

with

ψ6(�rl) =
1
nl

nl∑
j=1

ei6θlj(�rl) (2.50)

where nl is the number of neighbors of the particle at �rl and θlj(�rl) is the ori-
entation relative to some fixed reference axis of the bond between a particle
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at �rl and �rj (Fig. 2.8). In the crystalline phase this function is a constant (Nel-
son and Halperin 1979),

ln g6 = − 9
8π

kBT

µRa2
0

(2.51)

which in a real-space experiment is easy to measure and provides access
to the shear modulus. Now, in the hexatic phase, i.e. above Tm but below
the second transition temperature Ti, g6 shows an algebraic decay behavior
∼ r−η6 with an exponent

η6 =
18kBT

πKA
(2.52)

which is related to the Frank constant, Eq. (2.26). Recalling Eq. (2.37), we
observe that

lim
T→T−

i

η6 → 1
4

(2.53)

Finally, at T > Ti the orientational order decays again exponentially ∼
e−r/ξ6 with a correlation length ξ6 that goes like ln ξ6 ∼ |T − Ti|−1/2 for
T → T+

i . We have already remarked in the discussion of Eq. (2.37) that KA

jumps discontinuously to zero at Ti, implying that η6 here jumps to infinity
so that the algebraic decay of g6 comes to a natural end at Ti.

2.3
Experiments in Two Dimensions

In the following we list a few 2D experiments that have been designed to
study phase transitions in 2D and, in particular, to check the predictions of
the KTHNY theory. While this section focusses more on the experimental
techniques, the next section will be devoted to a discussion of the results and
their implications regarding the theory of melting.

Fig. 2.8 “Bonds” (dashed lines) joining a central particle to its six
neighbors. Each bond makes an angle θ with a fixed reference axis.
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2.3.1
Systems Not Involving Colloids

As outlined in the Introduction, 2D colloidal systems are the focus of this
chapter, but there are numerous other appropriate systems to study 2D melt-
ing. The following list of them is far from being complete and is intended
more to demonstrate the rich variety of 2D systems with which di=erent
parts of the KTHNY theory have been tested. Grimes and Adams (1979)
were the first to study the transition from a 2D fluid phase to a 2D crystal
of electrons (“Wigner” crystal) on the surface of fluid helium by measuring
microwave absorption. Since these measurements are not sensitive to the ori-
entational correlation, the existence of the hexatic phase could not be demon-
strated. Dimon et al. (1985) and Heiney et al. (1982) investigated a monolayer
of xenon atoms on graphite and found some evidence for the hexatic phase
from X-ray scattering data, but were not able to control the e=ect of the pe-
riodic substrate on the phase behavior. By comparison with simulations Li
and Rice (2005) showed that the out-of-plane motion of a monolayer of Pb
atoms on a PbGa alloy liquid–vapor interface suppresses the hexatic phase.
Free-standing liquid-crystal films showed short-range translational and long-
range orientational order (Pindak et al. 1981; Davey et al. 1984), but such
films consist of a few molecular layers and are therefore certainly not purely
2D. Detailed studies of the temperature dependence of the correlation length
in thin block copolymer films have been reported by Segalman et al. (2003).
In Angelescu et al. (2005) a first-order melting transition was observed in a
similar system, but the role of the finite film thickness and the coupling to
substrate inhomogeneities remained unclear. Indications of a hexatic struc-
ture were also found in a stationary non-equilibrium system of magnetic
bubble arrays driven by an AC magnetic field (Seshadri and Westervelt 1992)
and in thin layers of granular systems where thermal motion was induced
by mechanical vibrations (Reis et al. 2006; Zheng and Grieve 2006). Some
evidence for two-step melting was seen in layers of millimeter-sized particles
which were levitated against gravity by vertical electric-field-driven currents
in dense dusty plasma (Melzer et al. 1996; Quinn and Goree 2001). The use
of the latter systems as model systems for 2D melting is not evident given
the fact that they are driven far out of thermodynamic equilibrium.

2.3.2
Colloidal Systems with Screened Coulomb Interaction

We next turn to 2D systems built out of micrometer-sized colloidal parti-
cles. They have many advantages compared to the systems mentioned above.
The most important advantage of using colloidal particles is that they are big
enough to be directly observable by means of video-microscopy. At the same
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time they are still small enough to perform thermally driven (“Brownian”)
motion and can thus be considered as a statistical ensemble in thermal equi-
librium. Not only the length scale but also the time scale for configuration
changes are in an easily observable regime, since it takes typically seconds
for them to di=use across their own diameter. Using digital image process-
ing the trajectories of the particles can be extracted and analyzed numerically
on all relevant time and length scales.

In Murray and Van Winkle (1987) and Tang et al. (1989) charged spherical
colloids (polystyrene-sulfonate microspheres) were used in aqueous suspen-
sion. Confinement to two dimensions was realized by squeezing the sus-
pension between two nearly parallel glass plates providing a thin film. The
colloids strongly ionize [typically 20 000 e− for particles with 0.3 µm diame-
ter (Murray and Van Winkle 1987)] and the colloid–colloid pair interaction is
a screened Coulomb potential where the screening is ultimately due to the
counterions in the solution. Murray et al. were the first to identify the hexatic
phase in colloidal systems by measuring the structure factors of this system,
which were similar to those given in Fig. 2.2. In addition they determined the
distance dependence of the orientational correlation function in Eq. (2.49).
They used a wedge geometry of the glass plates so that the thickness of the
fluid layer increased from 1±0.3 µm with an inclination of 4±0.5×10−4 rad
in one direction. Due to the additional interaction of the colloids with the
glass plates, a density gradient of the particles appeared in equilibrium with
low density in the thin-film region. Because of this, di=erent types of crystal
symmetries were found in the arrangement of the colloids along the density
gradient. In the high-density region, 2000 particles were observable in the
field of view of 38 × 25 µm2; while in the low-density region, only about 100
particles were traced.

In order to avoid a possible influence of the inherent particle density gra-
dient, a flat cell geometry was used by Tang et al. (1989). Two disk-shaped
glass plates with di=erent diameters were glued concentrically on top of each
other, so that the smaller one would act like a stamp when pressed against
a third plate. The space between the first and third glass plates was sealed
by a rubber O ring near the circumference. The ring-like space between the
small plate and the O ring was used as a 3D reservoir for the 1 µm-sized
spheres. Reducing the gap between plates two and three below ∼ 5 µm, the
2D population of colloids expanded into the reservoir. In this way a crystal of
3430 particles was molten over 7 h to a liquid with 1460 particles in the field
of view of 277 × 222 µm2. A faster melting rate did not seem to change the
results. The hexatic phase was observed but the possibility of the coexistence
of the isotropic liquid and the hexatic phase could not be ruled out.
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2.3.3
Colloidal Systems with Hard-Core Repulsion

Marcus and Rice (1996) [see also Marcus and Rice (1997)] set up a colloidal
system with essentially hard-core repulsion combined with a short-range
square attractive part. They used polymethylmethacrylate microspheres ster-
ically stabilized against van der Waals attraction with a layer of poly(12-
hydroxystearic) acid. Particles of diameter 0.93 µm were suspended in aque-
ous sucrose solution (10% by weight) in order to eliminate sedimentation.
The spacing between the walls of a flat thin glass cell was found to be optimal
at ∼ 1.2 µm, thereby avoiding immobilization at lower and out-of-plane mo-
tion at higher distances. The quantity to be varied in di=erent measurements
was the particle density. Marcus and Rice clearly demonstrated the existence
of a hexatic phase and observed isotropic–hexatic and hexatic–crystal phase
equilibria at both transitions. Again the influence of the confining walls re-
mained unclear. Studying a colloidal system with perfect hard-core interac-
tion, Karnchanaphanurach et al. (2000) were not able to identify a hexatic
phase.

2.3.4
Colloidal Systems with Dipole Interaction

The first 2D melting study using induced dipole interaction was published
by Kusner et al. (1994). These authors introduced the idea that the e=ective
system temperature can be varied in situ at constant particle densities by
controlling their induced dipole moment through an external field (Kusner
et al. 1995).

Polystyrene particles of 1.6 µm diameter in aqueous solution were con-
fined between parallel glass plates of 2.4 µm spacing. The colloids were sul-
fonated with a concentration of 2×1013 SO−

4 surface groups. The glass plates
were covered with a 20 nm Au film serving as transparent electrodes for
the electric field which polarizes the colloids and induces an electric dipole–
dipole interparticle potential. The electric field had a frequency of 3.75 MHz
in order to prevent screening by counterions. If water and polymer particles
are treated as isolating dielectrics, the pair potential is given by

U(r) =
εw(εw − εs)2

(2εw + εs)2
r6
s

r3
〈| �Ew|2〉 (2.54)

where εw and εs are the dielectric constants of water and colloid, respectively,
rs is the radius of the sphere, and �Ew is the electric field. The phase behavior
depends on the ratio of the potential versus the thermal energy described
with the dimensionless interaction strength Γ defined as

Γ =
U(rWS)

kBT
∝ 1

Tsys
(2.55)
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where rWS = 1/
√

πρ is the Wigner–Seitz radius, with ρ being the 2D density.
Γ can be interpreted as an inverse temperature and is externally controlled
by means of the electric field �Ew. The interaction strength is the only para-
meter controlling the phase behavior of the system. At high Γ the sample is
a hexagonal crystal, whereas for low Γ it is an isotropic fluid. Exploiting g6(r)
data and taking screening of counterions into account, Kusner et al. found a
hexatic to crystalline transition at Γm = 60 ± 3.

The key problem in the 2D colloidal systems discussed above is the con-
finement between glass plates. First, the neighborhood of the plates implies
that the screening length of the Yukawa potential due to counterions in the
presence of the glass surfaces is ill defined and may evolve in time over the
experiment. In addition, surface roughness or impurities at the plates may
lead to pinning centers for the colloidal particles. We next describe in de-
tail the 2D system of superparamagnetic colloids at the free air–water inter-
face which circumvents these problems. It was originally developed by Zahn
(1997) [see also Zahn et al. (1997), Zahn et al. (1999), and Zahn and Maret
(2000)] and later improved by Keim (2005).

The experimental setup consists of spherical colloids (diameter d =
4.5 µm) that are confined by gravity to a water–air interface formed by a water
drop suspended by surface tension in a top-sealed cylindrical 8 mm diameter
hole of a glass plate (see Figs. 2.9 and 2.10). Due to Fe2O3 doping the parti-
cles are superparamagnetic and rather heavy, with a mass density ≈ 1.5 ×
10−3 kg m−3 and a susceptibility per particle χ = 6.47 × 10−11 Am2 T−1

obtained by SQUID measurements. A magnetic field �H applied perpendic-
ular to the air–water interface induces a magnetic moment �M = χ �H in each
particle, which leads to the repulsive dipole–dipole pair interaction

Emagn =
µ0

8π

m2

r3
=

µ0

4π

χ2 �H2

r3
(2.56)

Fig. 2.9 Superparamagnetic colloids confined at a water–air inter-
face due to gravity (side view). A magnetic field �H perpendicular to
the interface induces a magnetic moment �m leading to a repulsive
interaction.
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with χ being the susceptibility per colloid. The interaction strength Γ is then
defined by Emagn at the nearest-neighbor distance dnn = (πρ)−1/2,

Γ =
Emagn

kBT
=

µ0

4π

χ2 �H2(πρ)3/2

kBT
∝ 1

Tsys
(2.57)

so that the particle–particle interaction becomes

βv(r) =
Γ

(r/dnn)3
(2.58)

The ensemble of particles is visualized with video-microscopy from above
and the signal of a CCD 8-bit gray-scale camera is analyzed on a computer.
The field of view has a size of 835×620 µm2 containing typically up to 3×103

particles, whereas the whole sample contains up to about 3 × 105 particles.
In order to get size, number, and positions of the colloids, the image is bi-
narized: all pixels with a gray level above a suitable cuto= are set to white
whereas pixels below the cuto= are set to black. The software recognizes
areas of connected pixels (called blobs) with respect to the uniform back-
ground; the amount of connected pixels of each blob gives the projected size
of the colloid and the barycenter gives its position. The average projected
size of the colloids gives information about the vertical position of the in-
terface relative to the focus of the camera. If the camera is moved in the
vertical direction, particle images are smallest in focus and bigger out of fo-
cus (see Fig. 2.10). This information is used to maintain a flat water surface

Fig. 2.10 Schematic drawing of the regulation of the interface using
the projected size of the colloids. Colloids appear smallest when in
focus. Deviations from the set point of projected size are corrected
by the volume of the droplet using a syringe.
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by compensating the loss of water due to evaporation (even if the sample is
encapsulated). A computer-controlled syringe driven by a micro-stage con-
trols the volume of the droplet and thereby the curvature of the interface.
Depending on the optical components used, a resolution down to 250 nm in
the vertical position of the interface in the middle of the droplet relative to
the camera is achieved. An active regulation of the vertical camera position
is overlaid to get a completely flat surface. The set point is the number of
particles in the field of view chosen to reach a homogeneous number density
profile throughout the whole sample. That is, if the interface is convex, par-
ticle density will rise in the middle of the sample due to gravity. The camera
is lifted by a micro-stage, the interface gets out of focus, which is compen-
sated by the regulation of the syringe. In this way fluctuations around the
set point of particle number are suppressed below 1% over several weeks
and the biggest observed particle density gradient in the horizontal plane is
less than 1%. The latter regulation is done by the variation of the inclination
of the whole experimental setup. The inclination is also controlled actively
by micro-stages so that the resolution is in the range of α ≈ 5 µrad pro-
viding best equilibrium conditions for long time stability. The images are
analyzed with a frame rate of 250 ms and the coordinates of all the particles
are recorded for every time step containing the whole phase space informa-
tion. The thermal activated out-of-plane motion of the colloids is in the range
of a few tenths of a nanometer so the ensemble is supposed to be an ideal
two-dimensional system.

2.4
Colloidal Experiments and the KTHNY Theory

2.4.1
Direct Imaging of Defect Structures

The video-microscopy technique allows physical processes related to the mo-
tion of the colloids to be directly imaged. This technique thus seems to be
particularly useful for testing the KTHNY theory – a theory whose power-
ful predictions are all based on the simple microscopic picture of disclina-
tion and dislocation unbinding. One may wonder if it is possible to directly
observe these unbinding events and to connect these observations to the
breakup of translational and orientational order.

The answer to this question is far from being clear as the colloid KTHNY
literature on this point is full of irritating and partly contradictory findings.
A good example is the classical work of Murray and Van Winkle (1987), who
clearly derived two-stage KTHNY melting from a correlation length analysis
but failed to find paired dislocations in the solid phase or free dislocations
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in the hexatic phase. Instead, they observed in the fluid phase islands of
sixfold coordinated particles surrounded by a network of grain boundaries
of fourfold, fivefold and sevenfold coordinated particles. Inside the hexatic
phase, these grain boundaries did not disappear, but neighboring grains be-
gan to orient with respect to each other. A similarly contradictory result has
been obtained by Tang et al. (1989). These authors were unable to observe
any sort of unbinding of an isolated dislocation into disclinations, but iden-
tified a grain-boundary-induced melting mechanism with spontaneous clus-
ter formation of dislocations and dislocation pairs and even the formation of
interconnected liquid-like islands. However, they still clearly derived correla-
tion lengths and power-law exponents in good agreement with the KTHNY
theory. Kusner et al. (1994), on the other hand, found agreement with all
the elements of the KTHNY theory, including its microscopic explanation of
melting. Only a few dislocations paired over short distances were found in
the solid phase, while in the hexatic phase free dislocations scattered uni-
formly throughout the images were identified. No clustering of dislocations
or any sort of grain boundaries was observed. Finally, the fluid phase was
characterized by a breakup of bound disclination pairs and the formation of
dislocation aggregates.

A large number of Voronoi constructions of colloid configurations are pre-
sented and discussed in the paper of Marcus and Rice (1997), one of which
is shown in Fig. 2.11 for a configuration inside the hexatic phase. Bound
dislocation pairs occur as clusters of two fivefold and two sevenfold parti-
cles. Unbound free dislocations made up of individual tightly bound fivefold
and sevenfold sites are clearly observable. Marcus and Rice analyzed whole
sequences of these configurations and found that dislocations and clusters
of dislocation defects appear and disappear on the time scale of successive
video frames (30 ms), and that their absolute locations are temporally uncor-
related. Thermally activated bound dislocations are thus stable only over a pe-
riod much shorter than 30 ms. It is the presence of a small steady-state con-
centration of unbound dislocations (stemming from a dissociation of these
short-lived bound dislocations) that causes the slow algebraic decay of the
bond orientational order in the hexatic phase.

Such Voronoi constructions of configurations were also taken by Marcus
and Rice (1997) to demonstrate that there exist states with coexistence be-
tween the hexatic and fluid phases, and between the solid and hexatic phases
– a result that implies that the liquid → hexatic and hexatic → solid transi-
tions are first order, which the authors explain with the particulars of their
pair potential.

A more quantitative way of analyzing direct images of colloidal config-
urations has been suggested by Eisenmann et al. (2005), who used these
configurations to compute the probabilities of defect formation. Assuming a
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Fig. 2.11 Voronoi construction for a particle configuration with
9000 colloidal particles inside the hexatic phase. Sixfold coor-
dinated sites are white, fivefold sites are red, sevenfold sites are
green, and eightfold sites are filled green.

Boltzmann distribution one can transform these probabilities into defect in-
teraction energies and can then test the validity of the pair interaction Hamil-
tonian in Eqs. (2.17) and (2.18). Figure 2.12 shows a plot of the dislocation
pair energies against the inverse temperature Γ for dislocation pairs in the
ground state, i.e. having the smallest separation possible on a triangular lat-
tice. Comparison of the measured data with the solid line representing the
prediction based on Eq. (2.17) reveals rather good agreement, which is the
more remarkable as no adjusting parameter has been used. Equally good
agreement was found with respect to the distance dependence of Eq. (2.17),
but not regarding the angle dependence, where discrete lattice e=ects be-
come important. Still, on the whole, the results of Eisenmann et al. (2005)
clearly support the fundamental interaction Hamiltonian on which the whole
KTHNY theory is based.

Summarizing this section we may say that the analysis of direct images of
colloidal configurations does not always lead to unambiguous results. Mur-
ray and Van Winkle (1987), for instance, conclude from their observations
that, although the microscopic ideas of dislocation and disclination unbind-
ing seem to be too naive, the main predictions of the KTHNY theory are still
in good agreement with the experimental results. Is that possible? Can a the-
ory deliver correct results if its fundamental ideas are inappropriate? One can
equally well challenge these qualitative observations, which in many cases
are derived from inspecting and interpreting just a few selected images, and
can ask the question whether these observations can compete with “hard”



70 2 Phase Transitions in Two-Dimensional Colloidal Systems

Fig. 2.12 Temperature dependence of the pair interaction energy βHD of dislocation pairs
in a colloidal system with 1/r3 pair interactions. The dislocation pairs have antiparallel
Burgers vectors. Open circles: video-microscopy experiment; filled triangles: simulation;
solid line: prediction according to Eqs. (2.17) and (2.18). Melting transition at Γm = 60.

quantitative results that are obtained from averaging over thousands of these
images. One should keep this question in mind in the following sections,
where we turn to the discussion of just these quantitative results.

2.4.2
Correlations: Translational and Orientational Order

Structure Factor

To set the stage we get back to the structure factor defined in Eq. (2.2) and
plotted in Fig. 2.2. Similar plots have been analyzed by Marcus and Rice
(1996) for a colloidal system with hard-core repulsion. The shape of these
peaks can be related to the underlying symmetry of the system (Davey et al.
1984). This is illustrated in Fig. 2.13, taken from the work of Marcus and Rice
(1996); this figure shows fits of the transverse angle-dependent lineshape of
S(q) patterns such as those in Fig. 2.2. While the angle varies, the radius
is fixed to wavevectors showing the strongest peak. There is no angular de-
pendence for the isotropic phase (A), while the hexatic lineshape (B) agrees
well with a square-root Lorentzian (solid line S(χ) ∝

√
1/[(χ − α)2 + β2]

with α being the peak position and β its width), and the shape in the
crystalline phase (C) agrees with a simple Lorentzian function (solid line
S(χ) ∝ 1/[(χ− α)2 + β2]). These fits support the idea that the system really
possesses three distinct phases, each with its own symmetry and character-
istics.

Pair Correlation Functions

To study the symmetries of these phases also in real space we now turn to
the pair distribution function g(r) defined in Eq. (2.48) to quantify the trans-
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Fig. 2.13 Angular dependence of the shape of the Bragg peaks for
(A) the isotropic fluid, (B) the hexatic phase, and (C) the crystal.

Fig. 2.14 Correlation functions g(r) and g6(r) for di=erent colloid densities. The crys-
talline phase (A) has quasi-long-range translational and long-range orientational order
(indicated by the envelope function). The hexatic phase (B) has short-range translational
and quasi-long-range orientational order; and the isotropic fluid (C) has translational and
orientational short-range order. The curves have been shifted for clarity.

lational order, and to the orientational correlation function g6(r) defined in
Eq. (2.49) to characterize the rotational order. In video-microscopy experi-
ments, both correlation functions can be easily obtained from the recorded
positions of the colloids. In the case of true long-range order the envelope
of these correlation functions will approach a non-zero constant at large dis-
tances. As already explained this is strictly true only regarding the orienta-
tional symmetry in the crystal but not for the translational order, which is
never really long-range. The translational correlation function therefore de-
cays algebraically, i.e. like ∼ R−ηG , even deep inside the crystalline phase,
but exponentially ∼ e−R/ξ everywhere outside the crystalline phase – see the
discussion of Eqs. (2.47) and (2.48). We also recall from Section 2.2.6 that
a similar algebraic decay is found also for the orientational order parameter
in the hexatic phase. In the isotropic fluid, both correlation functions decay
exponentially with temperature-dependent correlation lengths ξ and ξ6. All
these features can be seen in Fig. 2.14, taken from the experiment of Marcus
and Rice (1996), where the particle density has been varied all the way from
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the crystalline phase (A) through the hexatic phase (B) to the isotropic fluid
(C).

Figure 2.15, taken from Keim et al. (2006) and Lin et al. (2006), shows
similar results for the orientational correlation function produced from the
video-microscopy data of colloids interacting via a magnetic dipole interac-
tion and correlation functions of extensive simulations carried out by Lin et
al. (2006). The oscillations reflect the shell structure of neighboring particles
and are due to the fact that colloids with large deviations from their typical
equilibrium distance are poorly correlated in their bond orientation. Also, the
statistical weights of the maxima and minima are very di=erent. Whereas the
histogram of particles with distances near the maxima increases linearly with
r, the corresponding histogram for the first minima shows a di=erent depen-
dence and is significantly smaller. This is clear; many particle pair distances
contribute to the maxima, but only a few to the minima. At large distances,
then, these di=erences are washed out and the oscillations fade away.

Figure 2.16, taken from Zahn and Maret (2000) and Lin et al. (2006), shows
the same behavior, but now g6 is calculated as a function of time (Domb and
Lebowitz 1983). In the crystalline phase where only bound dislocation pairs
with relatively short lifetimes are thermally excited, the bond orientation of a
particle is conserved for long times. If, however, in the hexatic phase disloca-
tion pairs dissociate and distinct dislocations di=use through the ensemble,
the bond orientation will decay on long time scales with an algebraic behav-
ior. In the isotropic fluid free disclinations di=use throughout the ensemble,
leading to a fast exponential decay. Again, g6(t) is shown for experiment and
simulation. Hence, the same qualitative behavior of the decay of the correla-
tion is found in space and time.

2.4.3
Elasticity: Macroscopic Criteria of KTHNY Melting

We have seen in Section 2.4.1 how problematic it is to directly observe those
microscopic events which the KTHNY theory postulates to determine the
melting process: the dislocation and disclination unbinding. There is, how-
ever, an alternative, though less direct, way to confirm that it is these two
processes that are responsible for the melting process. This way is related to
the Eqs. (2.37) and (2.41).

In Section 2.2.4 we showed how the disclination unbinding temperature
Ti can be related to the temperature-dependent Frank constant through the
72/π criterion, Eq. (2.37), and the dislocation unbinding temperature Tm

can be related to the Young’s modulus through the 16π criterion, Eq. (2.41).
Both equations thus link a transition temperature to those elastic constants
which are characteristic of the phases involved. Equations (2.37) and (2.41)
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Fig. 2.15 Orientational correlation function, g6(r), for various system temperatures in a
log–log plot. Experimental results are shown in the upper panel, and simulations in the
lower panel. In the lower panel a curve with critical value η6 = 1/4 is shown and g6(0)

is normalized to unity. It can be seen that limr→∞g6(r) �= 0 in the case of long-range
orientational order indicative of the crystalline phase; g6(r) ∼ r−η6(Γ) in the case of
quasi-long-range order typical of the hexatic phase; and g6(r) ∼ e−r/ξ6(Γ) if the order is
short-range (isotropic liquid).

are, first of all, predictions that are remarkable in their simplicity, but also
in their universality: whatever 2D system one considers, KTHNY predicts
that the first transition is reached when the Young’s modulus takes the value
16π and the second is reached when Frank’s constant takes the value 72/π.
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Fig. 2.16 Orientational correlation as a function of time, g6(t), for various di=erent tem-
peratures in a log–log plot. Experimental data are shown in the top panel, and simulation
data in the lower panel. One finds the same characteristic behavior as in Fig. 2.15, but
di=erent critical exponents.

Secondly, these are obviously macroscopic criteria, as no detail of the pair po-
tential needs to be known, only the temperature dependence of the Young’s
modulus and the Frank constant, which as elastic constants are macroscopic
quantities. But, thirdly and most importantly in the current context, these
criteria are the two mathematical statements that best summarize the mi-
croscopic picture of melting suggested by the KTHNY theory; they define
the point where we get direct access to the essential KTHNY idea of defect
unbinding.

To understand this latter remark, recall that Eqs. (2.37) and (2.41) were
derived by searching for those temperatures where the mean defect pair dis-
tance 〈r2〉 in Eq. (2.31) tends to infinity. That we can derive similar criteria
for both Ti and Tm is thus simply due to the fact that both the disclination–
disclination interaction and the dislocation–dislocation interaction have the
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same distance-dependent interaction potential in Eq. (2.28), which di=er only
in the prefactor c, which in turn depends on nothing but Young’s modulus
in one case and Frank’s constant in the other case, but not on any particu-
lars of the pair potential. We also understand that both criteria just reflect
the unbinding condition c = 4, i.e. the temperature where the respective
unbinding for each defect type is completed. In that sense, these two crite-
ria represent the most direct way to check the microscopic principles of the
KTHNY theory. If we find these criteria to be satisfied in 2D systems, then
we may safely assume that these principles must be e=ective, irrespective of
whether we are able to directly observe them in our video-microscopy images
or not.

Each continuous symmetry that is broken at a phase transition to a discrete
one is associated with a specific modulus of sti=ness. An obvious example
of this principle from everyday experience is the liquid-to-crystal transition
where a non-zero shear modulus goes along with the appearance of the solid
crystal. In two dimensions this is reflected by the behavior of the Young’s
modulus, which jumps from zero to 16π at Tm. As is evident from Eq. (2.9),
the Young’s modulus is determined by the shear modulus. Thus, also the
shear modulus takes a non-zero value below Tm, which is in agreement with
our experience that a crystal can resist shear stress. The same applies to the
transition from the liquid to the hexatic phase: the Frank constant defined
in Eq. (2.11) jumps from zero to 72/π at Ti, thus reflecting the fact that the
hexatic phase, but not the liquid, can resist rotational stress.

Young’s Modulus

In principle one could use the exponents of the algebraic decay of the trans-
lational correlation function in the crystalline phase, Eq. (2.43), to determine
the elasticity as a function of temperature [see Zanghellini et al. (2005)], but
here we will present results that are based on an alternative approach. Keim
et al. (2004) describe a method to determine the elastic dispersion relation
of a two-dimensional colloidal system. These relations quantify the “micro-
scopic spring constants” of the crystal in q-space. Analyzing the low-q be-
havior of the longitudinal and transverse bands one can extract the Lamé
coe;cients λ and µ, which can then be used to determine the Young’s mod-
ulus. This allows one to measure this modulus as a function of tempera-
ture and to compare it to the function KR(T ) obtained from the Halperin–
Nelson recursion relations in Eq. (2.39) – thus allowing a direct check of the
16π criterion in Eq. (2.41). We present in Fig. 2.17 the results for KR(T ),
which indeed approaches the universal value 16π at Tm (von Grünberg et al.
2004; Zanghellini et al. 2005). For the colloidal system the data points and
the KTHNY prediction agree within the experimental error bars. The essen-
tial conclusion here is that, based on thermally excited phonon softening,
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one would expect the Young’s modulus K to cross 16π at Γ = 51, while in-
cluding the additional e=ect of the dislocations leads to a crossing of the 16π

line at a higher value of Γ (Γm = 60). This di=erence shows that the tem-
perature dependence of K is produced not only by interacting phonons, but
near Γm also by dislocations. The data points follow the curves derived from
Eq. (2.39). Note that from these observations alone nothing can be inferred
about the order of the transition.

Also shown in Fig. 2.17 are the corresponding experimental and simu-
lated curves for a 2D electron solid on the surface of liquid helium. Fisher
et al. (1979) determined the temperature dependence of the shear modu-
lus of the 2D electron solid in a computer simulation and fitted the data
points to K(Γ) = 0.6386(Γ− 30.8), which in Fig. 2.17 is seen to cross 16π at
Γ = 109.5. The Halperin–Nelson renormalization relations [with Ec as free
parameter – see Zanghellini et al. (2005)] leads to a correction of this value
to Γ = 143. Figure 2.17 shows the experimental data points for a 2D electron
system on helium as obtained by Gallet et al. (1982) from a measurement
of the coupled electron–substrate transverse sound mode for three di=erent
electron densities. All three data sets pass through 16π at a common value of
Γ which is close to 143, but unfortunately fail to fall onto a common curve as
one would have expected. While the reason for this discrepancy remains un-
clear, at least one experimental data set is in good agreement with the curve
given by the KTHNY theory.

Fig. 2.17 Experimental check of the Kosterlitz–Thouless criterion of melting expressed by
Eq. (2.41): the Young’s modulus as a function of Γ for a system with 1/r3 and 1/r pair in-
teractions. The theoretical curves are explained in Fig. 2.7 (bottom), and the experimental
data points are for colloids with a pair interaction 1/r3 and electrons with pair interaction
1/r.
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It is interesting to compare the sequence of melting points predicted by
Eq. (2.41) on the basis of di=erent approximations for K in the electron sys-
tem (interaction 1/r) and the colloidal system (interaction 1/r3). Estimating
K by the finite-T approximation, and by its renormalized values, respec-
tively, we find in the electron system a shift of Γm at the transition from
109.5 → 143 while in the colloid system it shifts from 51 → 60. The shrink-
ing of the shift range when going from a 1/r to a 1/r3 pair potential seems
to suggest that an even more short-range potential (such as e.g. 1/r5) would
lead to an even smaller interval for these two temperatures, making it in-
creasingly di;cult to distinguish between a defect-mediated and a phonon-
mediated melting scenario. This observation is also supported by results ob-
tained in hard-core systems (Karnchanaphanurach et al. 2000).

Frank’s Constant

The procedure to use video-microscopy data for a check of the 72/π criterion,
Eq. (2.37), is straightforward: one just needs to extract η6 from the decay be-
havior of g6 and can then exploit Eq. (2.52) to obtain the Frank constant KA.
This was done in Keim et al. (2006), again for 2D colloidal systems with dipo-
lar interaction. Figure 2.18 shows the temperature dependence of KA within
the temperature range (57 < Γ < 60) of the hexatic phase. Both transition
points 1/Ti ∼ Γi = 57 and 1/Tm ∼ Γm = 60 have previously been deter-

Fig. 2.18 Experimental check of the Kosterlitz–Thouless criterion of
melting expressed by Eq. (2.37): Frank’s constant as a function of
Γ becomes 72/π at Ti. At Tm it diverges, indicating that the perfect
orientational symmetry of the crystalline phase is approached.
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mined by a quantitative analysis of the decay behavior. Knowing Γi one can
now determine the value of KA at Γi. It indeed crosses 72/π at the transition
and disappears deeper in the isotropic fluid. There is however no sudden
jump to zero below Γi, which is an artifact probably due to the method cho-
sen to determine KA via η6, as η6 is not defined in the isotropic fluid. On the
other hand, at the hexatic → crystal transition KA diverges, since the crystal
has perfect orientational order corresponding to infinite rotational sti=ness.
In Keim et al. (2006) the characteristic of the divergence is further analyzed.

To summarize this section, the microscopic melting mechanism of the
KTHNY theory seems to be confirmed by the results presented in Figs. 2.17
and 2.18. Dislocation pair unbinding indeed takes place at Tm, otherwise the
16π criterion could not be fulfilled, and also disclination unbinding seems to
happen at Ti because also the 72/π criterion is satisfied. However, we want
to stress that this is not incompatible with the observations made by several
groups that dislocations and disclinations may form clusters and that the
unbinding events are not easy to observe directly. Still the dominant e=ect
seems to be the unbinding of defect pairs.

2.5
Conclusion

This chapter is an attempt to review our current understanding of melting
in two dimensions as revealed from experiments on monolayers of colloidal
particles. Since the pioneering theoretical predictions of Kosterlitz, Thou-
less, Halperin, Nelson, and Young (KTHNY), many macro- and microscopic
aspects of the melting process have been studied experimentally and numer-
ically. Some of the early experiments, such as those on 2D electronic and
atomic systems, are hampered by the failure to resolve the motion of single
particles and by a coupling to the third dimension (e.g. the substrate), which
is di;cult to evaluate and to control. Macroscopic systems like granular lay-
ers, magnetic bubble arrays and dusty plasmas allow easy particle tracking
but are intrinsically athermal and necessarily driven out of thermodynamic
equilibrium. Numerical simulations still su=er to some extent from the lim-
ited number of particles and simulation times not always long enough to
reach equilibrium conditions.

Because colloidal particle systems confined to monolayers minimize the
above shortcomings, they have been exploited successfully over the past two
decades and have revealed many new features of the melting process. The
most prominent results are as follows:

• In electrically charged colloids with screened Coulomb interaction as
well as magnetic or dielectric colloids with (1/r3) dipole–dipole interac-
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tion, one clearly observes a two-step melting scenario from hexagonal
crystals through a hexatic phase into the liquid.

• The KTHNY theory provides a prediction of the melting temperature,
Γm, which can be calculated from the renormalized Lamé coe;cients
in agreement with experiments of dipolar systems.

• The spatial and temporal correlation functions for bond orientational
order g6(r) and translational order g(r) follow KTHNY predictions.
When going from the crystalline through the hexatic to the liquid state,
the decay of g6(r) goes from constant to algebraic to exponentially
short-range, while g(r) goes from algebraic to exponentially short-range
to exponentially short range. The values of the exponents agree with
KTHNY.

• This goes together with the appearance of bound dislocation pairs in the
crystal, which dissociate at Tm into isolated dislocations in the hexatic
phase, which at Ti further dissociate into isolated disclinations in the
liquid state. While each defect type can be easily identified in video-
microscopy images, it is di;cult to directly observe the defect pair
unbinding at Ti and Tm or to relate such observations to the melting
process.

• The appearance of bound and free dislocations gives rise to an extra
softening which adds to the usual thermal softening of the crystal pro-
duced by interaction phonons. The Young’s modulus in the crystalline
phase is found to fall below the usual phonon-induced value when ap-
proaching Tm, and decreases in agreement with the renormalization
prediction of Halperin and Nelson, ultimately reaching the universal
value of 16π. This finding supports the renormalization procedure of
Halperin and Nelson. In fact the most quantitative way to test the
KTHNY idea is to check whether the 16π criterion for the Young’s mod-
ulus and the 72/π criterion for Franck´s elastic constant are satisfied at
Tm and Ti, respectively, since these conditions are derived directly by
the divergence of the distance of dissociating defect pairs on the micro-
scopic level. In 2D colloidal systems with 1/r3 interaction, both criteria
are satisfied. This result confirms the most essential idea of the KTHNY
theory: that defect unbinding is the microscopic process responsible for
melting.

• The distance- and temperature-dependent distributions of the disloca-
tions in the crystalline phase allow one to directly and quantitatively
check the Hamiltonian of interacting dislocations, which is the starting
point of KTHNY theory.

Many of these results were obtained thanks to the 2D system of super-
paramagnetic colloids confined to the free air–water interface of a flat hang-
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ing drop. This system is ideally 2D since the out-of-plane motions of particles
are negligibly small compared to their diameter. The interparticle interaction
strength – and hence the e=ective system temperature – can be tuned from
outside by an external magnetic field. It is totally calibrated, which, combined
with accurate determination of the particle trajectories, allows one to quantify
all the physical properties of the system. The system size in terms of num-
bers of particles and observation times are larger than what can be reached in
typical numerical simulations. This ensures, in particular, observations close
to thermal equilibrium. Last but not least di=erent physical quantities as ob-
tained all from the same system can be directly quantitatively compared.

Yet, there are still quite a few open issues in 2D melting. What determines
whether or not the KTHNY melting of the 2D system is preempted by a
first-order transition? Numerical simulations (Strandburg 1986) on 2D sys-
tems varying the core energy in the dislocation Hamiltonian seem to suggest
that the crossover from first-order melting to two-step second-order melting
is controlled by the core energy Ec of a dislocation and should occur at Ec

values around 2.84kBT (Chui 1982; Chui 1983). The physical picture is that
for small enough Ec isolated disclinations are unlikely to form as disloca-
tions start to arrange in grain boundaries at high defect densities instead of
dissociating into disclinations. It is clear that more long-range interparticle
potentials give rise to larger Ec and hence favor two-step melting. Our ex-
perimental observation that the distance between the observed melting tem-
perature and the value obtained by extrapolating the curve of thermal soft-
ening (Fig. 2.17) is larger for the unscreened 1/r Coulomb potential than
for the 1/r3 dipole–dipole potential is consistent with this argument. The
same holds for the observation of Ec ≈ 5.3kBT (Zanghellini et al. 2005) for
the magnetic dipole system, which indeed shows two-step melting. For now,
the observations of phase equilibria in the copolymer system (Angelescu et
al. 2005) and the inherent structures (Chen et al. 1995; Somer et al. 1997)
cannot be put into this scheme, since the core energy is not really known in
those systems. It would thus be important to further quantify this issue by
comparative studies on power-law potentials with di=erent exponents and ex-
ponential potentials with di=erent ranges. Unfortunately it seems di;cult,
if not impossible, to realize experiments where the range of the potential
is changed under otherwise identical conditions. These investigations will
therefore be a privileged playground for numerical simulation work.

Another, yet related, question concerns the role of interactions between
defects. In some of the colloidal experiments (Murray and Van Winkle 1987;
Tang et al. 1989) indications of weak clustering of dislocations can be seen,
but this phenomenon does not seem strong enough to drive the system into
phase separation. How does the clustering a=ect KTHNY melting? This is
certainly not an academic question, as this clustering may determine the
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whole melting process. Recall the observations of Murray and Van Winkle
(1987) who found in the fluid phase islands of sixfold coordinated particles
surrounded by a network of grain boundaries, which remained in the hexa-
tic phase while the islands started to orient themselves with respect to each
other. This observation is not compatible with the principles of a dilute gas of
dislocations according to the KTHNY theory, and still all quantitative results
in Murray and Van Winkle (1987) were in agreement with this theory.

Nelson and Halperin used a Hamiltonian describing dislocation pairs with
four (5, 7, 7, 5) coordinated particles but they stated that this is the lowest
order of topological defect pairs. Higher orders of bound dislocations are
possible as long as the sum of the Burgers vectors equals zero. Their disso-
ciation at Tm will not change the picture of KTHNY melting but it changes
the possibility of distinguishing between isolated dislocations and disclina-
tions in the fluid phases due to the high density of topological defects. The
identification of the defects is usually done by counting the nearest neigh-
bors but that is not strictly true as one has to focus on Burgers vectors in
the case of dislocations. In the isotropic liquid the concept of Burgers vectors
breaks down simply because there is no lattice on which they are defined.
So five- and sevenfold particles have to be identified as disclinations even if
they are neighbored. Since Eq. (2.37) is derived by the divergence of the dis-
tance of disclinations finding KA → 72/π the microscopic KTHNY picture
is checked. Taking into account dislocations of higher order in KTHNY the-
ory may resolve the problem of heterogeneous distribution on short length
scales of dislocations at finite density.

Colloids would also be appropriate to study the role of lateral confine-
ment on the melting process, since boundaries can be easily realized by
hard mechanical walls or soft walls (Wille 2001) generated by optical tweez-
ers (Ashkin et al. 1986). Finally colloids open a rich terrain for crystals with
2D structures other than simple hexagonal. As an example, by tilting the
magnetic field out of the vertical direction in the 2D magnetic dipole exper-
iment, i.e. away from the normal of the layer, rhombic phases have been
obtained (Eisenmann et al. 2004b). This suppresses certain orientations of
dislocation pairs in the crystals, stabilizes orientational correlations (thereby
widening the hexatic phase) and, at larger tilt angles, results in anisotropic
melting into a smectic-like phase (Eisenmann et al. 2004a). Thus, there are
many more 2D phase transitions to be studied.
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