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1. INTRODUCTION 2425

Q1

Most of the time, we obtain information on an object by looking at it, 26

that is, we exploit the light that is scattered from it. The spectral and 27

angular distribution of the backscattered (and reflected) light gives us 28

information about the nature of the particles making up the object. For 29

instance, the reddish color of copper is determined by the absorption 30

properties (in the green) of the d electrons in the partially filled shell. 31
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On the other hand, the blue color of the sky is well known to originate1

from the scattering properties of the air molecules, which follows Rayleigh2

scattering with a cross-section proportional to 1/λ4. This tells us that the3

molecules are much smaller than the wavelength of light. In fact, a more4

thorough analysis allows a characterization of the density fluctuations of5

the air from the scattering properties of the sky. As a final example, we6

mention the ‘Glory’, the halo sometimes seen around the shadow of an7

airplane on clouds it is flying over, which will be discussed further below.8

In the following, we will be concerned with instances of such enhanced9

backscattering in nature, where the intensity is enhanced in the direction10

of backscattering. As we will see below, one such effect is due to the11

interference of multiple scattering paths in disordered media like clouds,12

milk or white paint. Due to the reciprocity of light propagation, such13

paths will always have a counterpart of exactly the same length, which14

implies that they will always interfere constructively in the backward15

direction.16

We will also discuss how this effect can lead to a marked change17

in the transport behaviour of the light waves in a disordered system,18

where diffuse transport comes to a halt completely. This transition is19

known as Anderson localization, and has been of great influence in the20

development of the theory of electrons in metals and condensed-matter21

physics. However, as will be seen in the discussion of backscattering22

enhancement below, the effect is also present in classical waves such as23

light, and there have been great efforts to try and experimentally observe24

the transition to Anderson localization of light.25

In the rest of the introduction, we will discuss the different instances26

of enhanced backscattering in nature and their possible connection to27

coherent backscattering. Then we will discuss the connection of coherent28

backscattering to Anderson localization in more detail, before discussing29

the main predictions of Anderson localization in order to guide the30

experimental search for the effect.31

Section 2 will return to coherent backscattering and will discuss in32

detail the different experimental observations connected to recurrent33

scattering, the influence of absorption and finite size of the medium,34

as well as the problem of energy conservation. In that section we will35

also discuss other instances of coherent backscattering, that is, with light36

scattered by cold atoms as well as with waves other than light.37

In Section 3 we will discuss the quest for Anderson localization of38

light, describing the different experimental approaches used in the past, as39

well as their advantages and disadvantages. Finally, we will concentrate40

on our studies of time-resolved transmission and the corresponding41

determination of critical exponents of Anderson localization of light.42
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1.1 Instances of Enhanced Backscattering 12

As first realized by Descartes (1637), the rainbow is an enhancement in 3

intensity (different for different colors due to dispersion) due to refraction 4

of light in the rain drops, which, due to the dispersion of water, is highest 5

at different angles for different colors. However, this is a purely geometric 6

effect, which does not yield information on the size of the rain drops 7

reflecting the light. Something akin to a rainbow can be seen when flying 8

in an airplane over an overcast sky. When the sun is low and the cloud 9

cover not too thick, one can see a beautiful halo around the shadow of the 10

plane on the clouds. The effect is also well-known to alpinists who can 11

observe this halo around their own shadow on a day that is hazy in the 12

valley. In contrast to what one might think, this ‘Glory’ as it is called, is not 13

in fact a rainbow. One can see this for instance by considering the angle 14

of this colorful enhancement, which is usually only a few degrees and 15

hence much smaller than the 42◦ corresponding to a rainbow. Therefore 16

another mechanism has to be at work. It has been shown that the size 17

of the scattering droplets influences the angle of the glory (Bryant and 18

Jarmie, 1974). It turns out that this is due to the Mie-scattering properties 19

(Mie, 1908) of the droplets. With a typical size of 10 µm, the droplets in 20

a cloud are large compared to the wavelength of light. Furthermore, as 21

illustrated by experiments on a levitating droplet of water, Glory is the 22

property of a single drop (Lenke, Mack and Maret, 2002). 23

Enhanced backscattering is also commonly observed in forests, where 24

the leaves of dew-covered trees, or the blades of dew-covered grass, have 25

a halo. This effect is called sylvanshine (see e.g. Fraser (1994)) and is due 26

to the focusing action of the droplet on the reflecting surface of the leaf. By 27

the same principle, the diffuse reflection from the leaf is channeled back 28

through the lens (i.e. the drop) which decreases the angle of reflection. 29

Hence the leaves or the grass blades are brighter than the background. 30

The grass does not even need to be dew-covered to observe a halo, as there 31

is an additional effect increasing the intensity in the direct backscattering 32

direction. Exactly opposite to the incidence, any ensemble of rough objects 33

will be brightest. This is because in this direction, we see the reflected light 34

directly and none is lost due to shadows of other objects (Fraser, 1994). 35

This is known as the corn-field effect. 36

As a final instance of enhanced backscattering, let us mention 37

observation of the intensity of objects in the solar system, such as the 38

moon or other satellites of planets, when the earth and the sun are in 39

opposition to the moon. In that case, it was observed by Gehrels (1956) for 40

the moon and subsequently for many other satellites (Oetking, 1966) that 41

the intensity of the satellite is in fact increased over its usual value. Due 42

to the arrangement of sun and satellite when the effect is observed, this 43

was called the ’opposition effect’. In this effect, coherent backscattering 44

as we will discuss below, works in concert with analogues of the effects 45
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described above, such as the corn-field effect. The presence of coherent1

backscattering in the opposition effect was discovered (Hapke, Nelson2

and Smythe, 1993). With this knowledge it was then possible to actually3

study the surface properties (e.g. the granularity) of these satellites from4

remote observations.5

1.2 Coherent Backscattering67

Among instances of enhanced backscattering, here we will be concerned8

mostly with coherent backscattering, an interference effect that survives9

all averages in a random medium. Fundamentally, the enhancement is due10

to the fact that, because of time-reversal symmetry, every path through11

a random medium has a counterpropagating partner. Light elastically12

scattered on these two paths interferes constructively, because the path-13

lengths are necessarily the same. This leads to an enhancement of exactly a14

factor of two in the direction directly opposite to the incidence. In contrast15

to Glory or other effects discussed above (Lenke, Mack and Maret, 2002),16

coherent backscattering is not an interference due to the properties of a17

single scatterer, but relies fundamentally on multiple scattering. In fact,18

in the single-scattering regime there cannot be a coherent backscattering19

cone as there cannot be a counterpropagating light path. The entry- and20

exit-points of a multiple-scattering path can then be seen as the two points21

of a double slit, which, due to the coherence of the time-reversed paths,22

necessarily interfere with each other. The different interference patterns23

corresponding to different light paths in the disordered medium have to24

be averaged over, which will lead to the shape of the backscattering cone25

discussed in Section 1.3 below. What can be seen from this picture is that26

in the exact backscattering direction, the averaging will always lead to an27

enhancement factor of two.28

These principles behind the origin of the backscattering cone will29

strongly influence the transport through a random system. Taking the30

end points of the counterpropagating paths to coincide somewhere inside31

the sample, there will be a two-fold enhancement at this point on such32

a closed loop. This in turn leads to a decreased probability of transport33

through the system. This effect is what causes Anderson localization of34

light (Anderson, 1958), i.e. the loss of diffuse transport due to increasing35

disorder. As disorder increases, the probability of forming closed loops36

on which intensity is enhanced increases. At a certain critical amount of37

disorder, these closed loops start to be macroscopically populated, which38

leads to a loss of diffuse transport. This critical amount of disorder has39

been estimated using dimensional arguments by Ioffe and Regel (1960) to40

be when the mean free path roughly equals the inverse wavenumber, i.e.41

when kl∗ ∼ 1. Such a mechanism was first proposed for the transport of42

electrons in metals, where it was found that an increase in disorder can43

turn a metal into an insulator (see e.g. Bergmann (1984)).44
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Historically, the first instances of localization were discussed in the 1

context of electron transport in metals, and thus localization was thought 2

to be a quantum effect. Moreover, due to the fact that localization should 3

always be present in two dimensions (see scaling theory below) and is not 4

influenced too much by the presence of correlations, these studies were 5

carried out in thin films. A review of these experiments can be found 6

in Altshuler and Lee (1988) and Bergmann (1984) and these studies of 7

localization in lower dimensions have had a big influence on the study 8

of other quantum effects in low-dimensional electron systems, such as the 9

quantum Hall effect (Klitzing, Dorda and Pepper, 1980; Laughlin, 1983). 10

Eventually however, it was realized that the quantum nature of 11

electrons is not a necessary ingredient for the occurrence of Anderson 12

localization as, in fact, this is purely a wave effect. Thus, it should also 13

be possible to observe localization effects with classical waves, such 14

as light, as was proposed by John (1984) and Anderson (1985). As we 15

will see below, coherent backscattering, that is, weak localization, was 16

observed with light shortly thereafter; subsequently, there was a vigorous 17

programme to also observe signs of strong localization of light, because 18

the study of photon transport in disordered media has many advantages 19

over the study of electrons in metals. This is because in the latter case there 20

are alternatives that may also lead to localization: in the case of electrons, 21

a random potential can lead to a trapping of particles, which also strongly 22

affects transport, while not being connected to localization. On the other 23

hand, electrons also interact with each other via Coulomb interaction, so 24

that correlations in electron transport are again not necessarily due to 25

localization effects, but may more likely be explained by electron–electron 26

interactions. In fact, it can be shown that in the presence of particle 27

interactions, the effects of localization vanish (Lee and Ramakrishnan, 28

1985). 29

However, as we will discuss below, the photonic system is not 30

completely free either of possible artifacts masking as localization. For 31

instance, light will be absorbed by materials to a certain extent, which 32

leads to a loss of energy transport similar to localization. Furthermore, 33

resonant scattering can lead to a time delay in the scattering process, 34

which leads to a slowing down of transport, which again may be mistaken 35

for localization. In Section 3 we will discuss in detail how these possible 36

artifacts can be circumvented and localization can in fact be observed. 37

1.3 Theoretical Predictions 3839

As discussed above, the enhanced backscattering from turbid samples, 40

known as coherent backscattering, is a manifestation of weak localization 41

of light. Localization has been studied intensely in electronic systems, 42

and many of the predictions found there can be applied also to optics. 43

Here we will discuss the most important predictions, which will also 44
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serve as a guiding line in the quest to observe Anderson localization1

of light. Most prominent in these are the predictions of the change in2

static transmission (Anderson, 1985; John, 1984) which turned out to be3

difficult to observe experimentally due to the presence of absorption in4

real samples. The critical prediction for Anderson localization concerns5

the fact that there should be a phase transition to a state where diffusion6

comes to a halt. This is described by scaling theory (Abrahams, Anderson,7

Licciardello and Ramakrishnan, 1979), which can also be investigated by8

a self-consistent diagrammatic theory (Vollhardt and Wölfle, 1980). This9

version of the theory can also be extended to describe open systems with10

absorption, a situation much more suitable for experiments (Skipetrov and11

van Tiggelen, 2004, 2006). First of all, however, we will describe the shape12

of the backscattering cone as calculated by Akkermans, Wolf and Maynard13

(1986) and van der Mark, van Albada and Lagendijk (1988).14

1.3.1 The Cone Shape1516

Given the nature of the backscattering cone due to interference of photons17

on time-reversed paths, one can explicitly calculate the shape of the18

enhancement as a function of angle. In order to do this, the interference19

patterns, corresponding to two counterpropagating paths with end-to-end20

distance ρ, need to be averaged weighted by the probability distribution21

of such an end-to-end distance occurring. Like in a double-slit experiment22

with slit separation ρ, each of these interference patterns will contribute23

a factor 1 + cos(qρ), such that the enhancement above the incoherent24

background is simply given by the real part of the Fourier transform of25

the end-to-end distance distribution:26

α(q) =
∫

p(ρ) · cos(qρ) dρ. (1)27

In the diffusion approximation, this probability distribution can be28

calculated (Akkermans, Wolf, Maynard and Maret, 1988; van der Mark,29

van Albada and Lagendijk, 1988) to be 1/a(1− ρ/
√
ρ2 + a2) in the case of30

a semi-infinite planar half-space. Here, the length scale a = 4γ l∗ describes31

how the diffuse intensity penetrates the sample as described by the Milne32

parameter γ and the transport mean free path l∗. The parameter γ can33

be calculated from the radiative transfer equation to be ∼0.71 and in the34

diffusion approximation is exactly γ = 2/3. In the following, we will35

always use the value of γ = 2/3. This leads to the following expression36

for the backscattering enhancement:37

α(q) =
∫ (

1−
ρ√

ρ2 + a2

)
· cos(qρ) dρ, (2)38
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which can be solved to give (Akkermans, Wolf and Maynard, 1986; 1

Akkermans, Wolf, Maynard and Maret, 1988; van der Mark, van Albada 2

and Lagendijk, 1988): 3

α(q) =
3/7

(1+ ql∗)2

(
1+

1− exp(−4/3ql∗)

ql∗

)
. (3) 4

This gives a cone shape in very good agreement with the experiments 5

that will be discussed in Section 2. As can be seen from an investigation 6

of the angle dependence, the cone tip is triangular with an enhancement 7

of 1 in the exact backscattering direction. The enhancement then falls off 8

on an angular scale proportional to 1/(kl∗); in fact the full width at half 9

maximum of the curve is given by 0.75/(kl∗). Thus the investigation of the 10

backscattering cone is a very efficient method of determining the turbidity 11

of a sample as given by 1/ l∗. 12

A similar description following diagrammatic theory, where the most 13

crossed diagrams have to be added up, was given by Tsang and Ishimaru 14

(1984). The main features of the curve remain the same, however the 15

different theories use different approximations for the Milne parameter. 16

1.3.2 Static Transmission 1718

One of the main predictions of Anderson localization in electronic systems 19

is the transition from a conducting to an insulating state. This of course has 20

strong implications for the transmission properties of localized and non- 21

localized samples. For a conducting sample, the transmission is described 22

by Ohm’s law, which describes diffusive transport of particles and hence a 23

decrease of transmission with sample thickness as 1/L . This is also the case 24

in turbid optical samples, where the transmission in the diffuse regime is 25

simply given by T (L) = T0l∗/L (see e.g. Akkermans and Montambaux 26

(2006)). In the presence of absorption, this thickness dependence of the 27

total transmission will change to an exponential decay for thick samples 28

according to 29

T (L) = T0
l∗/La

sinh(L/La)
, (4) 30

where La =
√

l∗la/3 is the sample absorption length corresponding to an 31

attenuation length la of the material, which describes the absorption of the 32

light intensity along a random scattering path. 33

The localization of photons will similarly affect the transmission 34

properties of a sample. As the diffusion coefficient of light becomes scale 35

dependent close to the transition to localization, the total transmission 36

will decrease. Scaling theory of localization, to be discussed below, 37

predicts that the diffusion coefficient at the transition will decrease as 1/L 38
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(John, 1984). This should then be inserted into the expression for the1

diffuse transmission of the sample, resulting in a different thickness2

dependence T (L) ∝ 1/L2. Again, this ignores the effects of absorption,3

and Berkovits and Kaveh (1987) have calculated the effects of absorption4

in the presence of a renormalized diffusion coefficient, finding5

T (L) = T0 exp(−1.5L/La). (5)6

Again, this leads to an exponential decrease of the transmitted intensity7

for very thick samples, where, however, the length scale of the exponential8

decrease has changed. When photons are fully localized, the transport is9

exponentially suppressed, as only the tails of the localized intensity can10

leave the sample. Thus Anderson (1985) has predicted the transmission11

in the localized case to be given by T (L) = T0 exp(−L/L loc), where12

L loc describes the length scale of localization. As was the case above,13

this derivation again does not take into account absorption, and a fuller14

description would be given by15

T (L) = T0
l∗/La

sinh(L/La)
exp(−L/L loc). (6)16

Again, this gives an exponential decrease of the transmitted intensity17

for thick samples with an adjusted length scale not solely given by18

the absorption length La . In an experimental investigation of Anderson19

localization therefore, static transmission measurements will have to find20

an exponential decrease of the transmission that is faster than that given21

by absorption alone. This implies that the absorption length must be22

determined independently for such an investigation to be able to indicate23

localization of light.24

1.3.3 Scaling Theory2526

When studying the thickness dependence of the conductance (i.e. the27

transmission), its dependence on disorder has to be taken into account.28

Abrahams, Anderson, Licciardello and Ramakrishnan (1979) produced29

the first version of such a theory, where they introduce the ‘dimensionless30

conductance’ g as the relevant parameter to study. In electronic systems,31

this simply is the measured conductance normalized by the quantum of32

conductance, e2/h. In optics, the conductance is naturally dimensionless33

and can be defined simply via the transmission properties of the sample.34

In fact, g can be calculated in three dimensions from the ratio of the35

sample volume to that occupied by a multiple scattering path. This36

volume of the multiple scattering path is given by λ2s, where s is the37

length of the path, which in the case of diffusion is s ∝ L2/ l∗. Thus one38

obtains g ≈ (W/L)(kW )(kl∗), where W is the width of the illumination,39
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which could also be obtained from the static transmission discussed 1

above. In the case of a localized sample, the transmission decreases 2

exponentially with L , which has to be reflected in a renormalization of 3

the path-lengths in order to give an exponentially decreasing g. The main 4

ansatz of Abrahams, Anderson, Licciardello and Ramakrishnan (1979), 5

in treating the problem of the localization transition in the following, 6

is to suppose that the logarithmic derivative β = d(ln g)/d(ln L) can be 7

expressed as a function of g only. 8

The transition to a localized state is then given by the criterion that 9

β changes from a positive value to a negative one. Ohm’s law as a 10

function of dimensionality states that the conductance scales as g ∝ 11

Ld−2. Therefore, making a sample larger and larger in low-dimensional 12

systems will in fact lead to a reduction of the conductance and hence 13

be associated with localization. Actually Ohm’s law straightforwardly 14

implies that β = d − 2 for large L (and thus g), such that d = 2 is the 15

lower critical dimension for a transition to localization to occur. In fact, 16

for low-dimensional systems the waves are always localized (Abrahams, 17

Anderson, Licciardello and Ramakrishnan, 1979). 18

Where there is a transition to localization (i.e. in d > 2), more de- 19

tails about that transition can be obtained by assuming the dependence of 20

β on g to be linear at the crossing of the null-line. In this case, the scaling 21

function β describes how one arrives from a diffuse conductance to one 22

which is exponentially suppressed in the localization length. This transi- 23

tion is a function of the disorder in the system, such that one can describe 24

it in terms of a diverging length scale of localization at the transition. This 25

would be given by an exponent ν, such that L loc ∝ |(g−gc)/gc|
−ν . With the 26

assumption that close to the transition, β can be approximated by a linear 27

function in ln g, this exponent is simply given by the inverse slope of β 28

at the transition. In the framework of scaling theory, no exact value can 29

be given for this exponent, however extrapolating β from its known de- 30

pendencies at large and small disorder, Abrahams, Anderson, Licciardello 31

and Ramakrishnan (1979) obtain an upper bound of ν < 1. As a matter of 32

fact, John (1984) has shown that expanding the treatment around the lower 33

critical dimension, the exponent should be given by ν = 1/2 in d = 2 + ε 34

dimensions. Such a value for the critical exponent would also be expected 35

for d > 4, where it should simply be given by the mean field value of a 36

critical exponent of an order parameter (Schuster, 1978). 37

At the transition, the loss of transmission can be described by a scale 38

dependence of the diffusion coefficient, such that D becomes smaller as 39

the sample size L increases. As discussed above, this results in D ∝ 40

1/L . Such a scale-dependent diffusion coefficient can however also be 41

described in the time domain, where the scale dependence corresponds 42

to a decrease of D with increasing path-length. To quantify this, one has 43

to insert the scale-dependent D into the diffuse spread of the photon 44
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cloud: 〈r2
〉 = Dt . Since D depends on the length scale as 1/L , we obtain1

that D ∝ t−1/3 at the transition (Berkovits and Kaveh, 1990). For states2

which are localized, i.e., with an exponential decrease of the transmission,3

the spread of the photon cloud has to be limited to the length scale of4

L loc, so that in this case we obtain D ∝ 1/t . Such a time-dependent5

diffusion coefficient will constitute the hallmark of Anderson localization,6

and can also be described by self-consistent theories, which predict the7

temporal scaling of D(Vollhardt and Wölfle, 1980). These theories have8

been adapted to a semi-infinite, open medium in order to describe the9

influence of localization on the coherent backscattering cone by van10

Tiggelen, Lagendijk and Wiersma (1995). They obtain a rounding of the11

cone, which experimentally is difficult to distinguish from absorption.12

Subsequently, Skipetrov and van Tiggelen (2004) and Skipetrov and van13

Tiggelen (2006) have applied self-consistent theory to open slabs, which14

are comparable to an experimental situation. Here they indeed find that15

in time-resolved experiments, a measure of D(t) could be found that can16

be studied experimentally. We will describe this in detail below.17

2. EXPERIMENTS ON COHERENT BACKSCATTERING1819

As we have seen above, the enhancement of backscattered light is due to20

the wave nature of light and the time-reversal symmetry (or reciprocity)21

of wave propagation. As such it is an illustration of the principle behind22

Anderson localization. Since light does not interact with itself and thus23

correlation effects can be ruled out, numerous experiments on coherent24

backscattering of light – and other waves – have studied directly the25

influence of disorder, polarization and the scattering process on Anderson26

localization. In this section we will discuss these experiments, starting27

with the discovery of coherent backscattering and continuing with other28

influential factors, such as sample thickness and absorption. Then we will29

discuss the effects of increased disorder on the backscattering cone before30

discussing experiments on multiple scattering in clouds of cold atoms.31

There, the nature of the scattering process is of paramount importance32

and the symmetries responsible for backscattering can be broken due to33

internal degrees of freedom of the atom involved in the scattering process.34

Finally we describe some experiments on coherent backscattering using35

waves other than light, such as acoustic and matter waves.36

2.1 Colloidal Suspensions and Turbid Powders3738

Soon after the prediction by John (1984) and Anderson (1985)39

that Anderson localization may be observed with light waves,40

weak localization was observed in the backscattering from colloidal41

suspensions by van Albada and Lagendijk (1985) as well as by Wolf42

and Maret (1985). These two groups used slightly different setups to43
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FIGURE 1 The different setups used by van Albada and Lagendijk (1985) (left) and
Wolf and Maret (1985) (right) to measure backscattering cones (see text). Reproduced
with permission from van Albada and Lagendijk (1985) and Wolf and Maret (1985)
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study suspensions of polystyrene particles, see Figure 1. van Albada and 1

Lagendijk (1985) illuminated their sample using a beamsplitter, such that 2

the backscattered light can be observed directly using a photomultiplier 3

on a translation stage. In present comparable setups, a CCD camera is 4

used to capture the backscattered light. Wolf and Maret (1985), on the 5

other hand, illuminated the sample using a glass slide as a beamsplitter 6

and placed the detector on a goniometer. 7

As can be seen from inspection of Figure 2, the two setups obtain 8

very similar results. When the volume fraction of polystyrene particles 9

is increased (thus decreasing l∗), the observed backscattering cone gets 10

wider. Sizeable enhancement factors are found in both cases, but they are 11

still far from the ideal theoretical value of 1. This is due to the fact that 12

the setups lack angular resolution very close to the centre, as well as to 13

a residual effect of direct reflection which is not suppressed completely. 14

These problems were later solved in the setups discussed below. 15

An enhancement of backscattered light was also found by Tsang and 16

Ishimaru (1984) and Kuga and Ishimaru (1984), however, found the 17

enhancements there were much smaller than those discussed above. 18

Furthermore, both van Albada and Lagendijk (1985), as well as Wolf 19

and Maret (1985) have discussed their findings in the context of weak 20

localization, which was not the case in Kuga and Ishimaru (1984). 21

Random interference of photons on multiply scattered paths can lead 22

to very large fluctuations in the intensity. These fluctuations are called 23

a speckle pattern. In order to observe a coherent backscattering cone 24

at all, the fluctuations due to the speckle pattern need to be averaged. 25

Using a colloidal suspension, as carried out by van Albada and Lagendijk 26

(1985) and Wolf and Maret (1985), this averaging is achieved by the 27
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backscattering contributions, the enhancements are between 0.4 and 0.6. Reproduced
with permission from van Albada and Lagendijk (1985) and Wolf and Maret (1985)
c© 1985, American Physical Society

motion of the scatterers, which leads to a redistribution of the path-1

lengths. In fact, studying the decrease of the time autocorrelation of a2

speckle spot directly gives information of the motion of the scatterers. This3

was developed into the technique known as diffusing wave spectroscopy4

by Maret and Wolf (1987) and Pine, Weitz, Chaikin and Herbolzheimer5

(1998) to extract information on particle size, flow rates and relaxation6

dynamics in complex turbid fluids. In turbid powders, the averaging over7

the speckle pattern is usually done by rotating the sample, which leads to a8

configurational average (see, for instance, Gross, Störzer, Fiebig, Clausen,9

Maret and Aegerter (2007)).10

2.1.1 Experimental Setups for Large Angles1112

In order to be able to characterize highly turbid samples, in addition to13

the relatively dilute suspensions discussed above, an apparatus capable14

of resolving rather large angles is needed. A rough estimate of the angles15

needed for samples close to the Ioffe–Regel criterion (Ioffe and Regel,16

1960) results in a cone width of up to 40◦. Even taking into account the17

narrowing of the cone due to internal reflections at the surface (see below)18

this means that in order to properly determine the level of the incoherent19

background, angles up to at least 40◦ need to be measured. However,20

at the same time the setups should be able to resolve the cone tip with21

great accuracy in order to observe deviations from the ideal tip shape22

(see below). These two requirements pose a big challenge, which has been23
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solved to some extent (angles up to 25◦) by Wiersma, van Albada and 1

Lagendijk (1995) and Gross, Störzer, Fiebig, Clausen, Maret and Aegerter 2

(2007) (angles up to 85◦) in two very different ways. 3

The setup of Wiersma, van Albada and Lagendijk (1995) combines a 4

movable detector with the method of using a beamsplitter to be able to 5

observe the most central angles to high accuracy. Instead of just moving 6

the arm of the detector, an ingenious scheme is used whereby the sample, 7

detector and beamsplitter are moved in concert to ensure that the detected 8

light is always perpendicular to the detector and the incident light is 9

always perpendicular to the sample surface. This is to ensure that the 10

polarizer (P in Figure 3) is always arranged such that direct reflections 11

are extinguished completely. The angular range covered by the setup 12

is, however, limited by the presence of the beamsplitter to below 45◦, 13

such that the incoherent background in extremely wide cones cannot be 14

assessed. On the other hand, a single setup can cover all angles up to 25◦ 15

at almost unlimited resolution with an extinction rate for singly reflected 16

light of nearly 100 per cent. 17

A radically different approach was chosen by Gross, Störzer, Fiebig, 18

Clausen, Maret and Aegerter (2007). Here, moveable parts are completely 19

absent and the backscattered intensity is measured at all angles 20

simultaneously (Figure 4). This is done via a set of 256 highly sensitive 21

photodiodes placed around an arc of a diameter of 1.2 m. At the very 22

centre of the arc, photodiode-arrays are used that yield a limiting angular 23

resolution of 0.14◦. At higher angles the diodes are increasingly far apart, 24

such that at angles >60◦ the resolution is 3◦. In addition, the central 25

3◦ of the cone are measured using a beamsplitter and a CCD camera 26

similar to those described above. This gives good overlap with the 27

central part of the wide-angle apparatus, such that effectively the whole 28

angular range is covered, while still measuring the tip of the cone with 29

a resolution of 0.02◦. The problems of perpendicular incidence onto the 30

circular polarizers discussed above is solved by using a flexible polarizer 31

foil placed in front of the whole arc. Such a polymer-based polarizer 32

has the disadvantage that only about 96 per cent of the reflected light is 33

extinct, so that enhancements of 2 as obtained by Wiersma, van Albada 34

and Lagendijk (1995) are not possible with this setup. On the other hand, 35

such a polarizer is much cheaper to obtain and can be used in a larger 36

window of wavelengths than a linear polarizer and quarter-wave plate. 37

For wavelength-dependent studies this is a great advantage. Furthermore 38

the renunciation of movable parts makes it possible to measure the small 39

intensities at very large angles with reasonable accuracy. 40

In addition, very broad backscattering cones pose a problem in 41

that they would seriously breech conservation of energy. As the total 42

reflectivity of an infinitely thick, non-absorbing sample should be R = 1, 43

the photon energy within the backscattering cone must be obtained from 44
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FIGURE 3 The wide-angle setup of Wiersma, van Albada and Lagendijk (1995). The
top and bottom panels show the setup at two different angles and illustrate the
rotation of the sample, the beamsplitter and the detector are in concert in order to
always keep the incident light perpendicular on the sample and the detected light
perpendicular on the detector. This is to reduce aberrations in the polarizer when the
light is incident at an angle, such that enhancement factors of unity can actually be
measured. Reproduced with permission from Wiersma, van Albada and Lagendijk
(1995) c© 1995, American Physical Society

destructive interference at other scattering angles. In order to be able to1

tackle this problem experimentally, a calibrated energy scale would be2

needed. A simple extension of the setup of Gross, Störzer, Fiebig, Clausen,3

Maret and Aegerter (2007) is capable of this, as will be described below.4

2.1.2 Absorption and Finite Thickness56

In all of the above, we have assumed that the sample can be treated7

as in infinite half-space, such that all incident photons are eventually8

backscattered at the sample surface. In reality, this is not always a9

good approximation and photons may either be absorbed or leave the10

sample at the other end or the sides. This implies that the photon path-11

length distribution needs to be adjusted by suppressing such long paths.12

This can be done, for instance, by introducing an exponential cut-off to13

the probability distribution p(s) discussed above, and we expect that14

the tip of the cone, which corresponds to these long paths, is altered.15
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CP

CP

samplestray light shielding

FIGURE 4 The wide-angle setup of Gross (2005). The sample is at the centre of an
arc of 1.2 m diameter, which holds 256 sensitive photodiodes. At the centre the diodes
are minimally spaced, yielding a resolution of 0.14◦; outwards they are increasingly
farther apart up to 85◦. To shield ambient light, the whole setup is placed inside a
black box. Direct reflections are suppressed by the use of circular polarization, which
is achieved using a flexible polarization foil placed in front of the whole arc. With this,
enhancement factors up to 0.96 are possible. The different diodes are calibrated using
a teflon sample, which in this angular range gives a purely incoherent signal.
Reproduced with permission from Gross, Störzer, Fiebig, Clausen, Maret and Aegerter
(2007) c© 2007, American Physical Society

van der Mark, van Albada and Lagendijk (1988), Akkermans, Wolf, 1

Maynard and Maret (1988) and Ishimaru and Tsang (1988) have studied 2

this problem quantitatively and find that, indeed, the tip of the cone 3

is rounded. For the simple case of absorption, the cone shape can be 4

obtained by replacing q in equation by
√

1/L2
a + q2(Akkermans, Wolf, 5

Maynard and Maret, 1988), where La is the absorption length of the 6

multiple scattering sample, i.e.
√

l∗la/3, with la the absorption length of 7

the material. This leads to a rounding on the angular scale of1θ = 1/kLa . 8

The situation is somewhat more complicated for finite samples, but van 9

der Mark, van Albada and Lagendijk (1988) have derived that, in that case, 10

the rounding is on an angular scale of 1θ = coth(L/La)/kLa . 11

This rounding of the cone has been observed by Wolf, Maret, Akker- 12

mans and Maynard (1988) and Schuurmans, Megens, Vanmaekelbergh 13

and Lagendijk (1999), see e.g. Figure 5. Similarly, the scaling of the width 14

of the rounding with sample thickness L and absorption length La has 15

been tested experimentally (see Figure 24 below). However, from the dis- 16

cussion above, it is also plausible that localization would lead to a round- 17

ing of the backscattering cone since localization too leads to a redistribu- 18

tion of the path-lengths for very long paths. This has been suggested by 19

Berkovits and Kaveh (1987) and calculated using self-consistent theory by 20

van Tiggelen, Lagendijk and Wiersma (1995). We will discuss these issues 21

further in the context of strong localization below. 22
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FIGURE 5 Absorption, finite thickness, but also localization of light would lead to a
rounding of the cone tip, which ideally would be linear as discussed above. This is
because in all of these cases, photons on long paths are not reflected from the
sample and therefore do not contribute to the backscattering cone. In these data from
Schuurmans, Megens, Vanmaekelbergh and Lagendijk (1999), this rounding can be
clearly seen for a sample of photoanodically etched GaP. Due to the lack of an
independent determination of the absorption length it is difficult to associate this
rounding unambiguously with absorption or localization. Reproduced with
permission from Schuurmans, Megens, Vanmaekelbergh and Lagendijk (1999)
c© 1999, American Physical Society

2.1.3 Surface Reflections12

In the above discussion of the shape of the backscattering cone, we3

have assumed that the cone is directly given by the diffuse path-length4

distribution of photons at the free sample surface. However, since samples5

usually have an effective refractive index higher than that of air, this6

distribution can be influenced by internal reflections of the light as it7

exits the sample. Such reflections will effectively broaden the path-length8

distribution, which will lead to a narrowing of the cone. This fact is9

illustrated in Figure 6. When the path-length distribution broadens, the10

average distance between the end points of time-reversed paths increases.11

As is evident within the picture treating the time-reversed paths as double12

slits, this leads to an increased distance and hence a narrowing of the13

resulting interference pattern. An averaging over all end-to-end distances14

then leads to a narrowing of the cone shape. This correction has been15

calculated quantitatively by Zhu, Pine and Weitz (1991) and Lagendijk,16

Vreeker and de Vries (1989), who found a strong dependence of the17

resulting value of kl∗ estimated from the full width at half maximum.18

Instead of FWHM = 0.75/(kl∗) for the scaling of the width as obtained19
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FIGURE 6 If the effective refractive index of the scattering medium is high, internal
reflections at the sample boundary may occur. These internal reflections in turn lead
to an overpopulation of longer end-to-end distances of photon paths. Since the
backscattering cone originates from the interference of time-reversed photon paths,
this overpopulation then artificially narrows the measured cones, such that the
determination of kl∗ directly via the width leads to an overestimation of its inherent
value

from Equation (3), Zhu, Pine and Weitz (1991) find a scaling as: 1

FWHM−1
=

(
2
3
+

2(1+ R)

3(1− R)

)
kl∗, (7) 2

where R is the angular averaged reflectivity due to the index mismatch. 3

Thus the values of kl∗ obtained from a fit to Equation (3) need to be 4

corrected by a factor of 1/(1 − R). This correction becomes important 5

in the quest for Anderson localization as in that case the particles are 6

very strongly scattering and the samples therefore have relatively high 7

refractive indices. Thus they show increased internal reflections, which 8

would lead to an overestimation of the value of kl∗ solely from the width 9

of the backscattering cone. In order to perform the above correction, the 10

refractive-index mismatch at the surface of the sample needs to be known, 11

i.e. the effective refractive index of the sample needs to be calculated. To 12

a first approximation, this can be done following Garnett (1904), but this 13

approach is strictly valid only for particles with a small refractive index. 14

In order to take into account the strong scattering cross-sections of the 15

particles, more elaborate schemes are necessary. Such calculations have 16

been pioneered by Soukoulis and Datta (1994) and Busch and Soukoulis 17

(1996). 18

2.1.4 Recurrent Scattering 1920

As the turbidity of the samples increases, there is an increased probability 21

for multiple-scattering paths to return upon themselves. In the extreme 22
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FIGURE 7 For very turbid samples, the enhancement in the backscattering direction
is reduced, as can be seen from a close-up at the cone tip of different samples. This is
argued to be due to an underpopulation of time-reversed paths because for very
turbid samples, there is an increased probability of visiting the same scatterer twice
in a multiple-scattering path. Therefore such paths do not contribute fully to the
interference pattern resulting in the backscattering cone. Reproduced with permission
from Wiersma, van Albada, van Tiggelen and Lagendijk (1995) c© 1995, American
Physical Society

case, this will lead to Anderson localization, when such paths become1

macroscopically populated. Wiersma, van Albada, van Tiggelen and2

Lagendijk (1995) have studied the backscattering cone for increasingly3

turbid samples and have found that with decreasing kl∗, the enhancement4

factor of the backscattering cone is reduced. When the first and last5

scatterer of a multiple-scattering path are the same, the contribution of6

the interference with the time-reversed path will be the same as that of7

the background. This implies that the background will be overestimated,8

leading to a reduction of the enhancement factor. This is illustrated9

in Figure 7 for two different samples with values of kl∗ of 22 and 6,10

respectively. Due to the high resolution and wide angular range of their11

setup described above (Wiersma, van Albada and Lagendijk, 1995), the12

enhancement factor is claimed to be determined to roughly 1 per cent.13

Thus the reduction shown in Figure 7 should be significant.14

It should be noted however that in these measurements of the15

backscattering cone there is no absolute determination of the intensity16

scale. The level of the incoherent background is simply determined17

from a cosine-shaped fit in addition to the backscattering cone described18

by Equation (3). As such, the backscattering cone would violate the19

conservation of energy, so that in such strongly scattering samples the20

absolute intensity needs to be known. This will be discussed in more21

detail below, where the enhancement is determined over the full angular22

range with an absolute intensity scale. In fact, the incoherent background23

can differ by a few per cent as the turbidity changes. For instance, as24
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FIGURE 8 A backscattering cone taking into account the absolute intensity scale.
Note that there is a negative contribution at high angles balancing the intensity in the
cone. This negative part of the enhancement can be described by a correction based
on the finite width of the time-reversed paths. Such a corrected theory is shown by
the dashed line. Data from Fiebig, Aegerter, Bührer, Störzer, Montambaux, Akkermans
and Maret (2007)

the turbidity increases so does the effective size of the sample, such that 1

the albedos of the different samples may no longer be comparable due 2

to losses at the sample boundary. Similarly, the absorption lengths of the 3

different samples will be different, such that the intensity scale may need 4

to be adjusted. This might be the case for the data in Figure 7, where the 5

broad cone is more consistent with a rounded tip, and thus seems to have 6

a somewhat higher absorption than the sample with a perfect two-fold 7

enhancement. As it stands, in the absence of an absolute determination of 8

the incoherent background, the enhancement factor cannot be determined 9

with an accuracy of one per cent. Thus the observed decrease may not be 10

significant. 11

2.1.5 Energy Conservation 1213

From the discussion so far it would seem that coherent backscattering 14

violates the conservation of energy: In all of the theoretical calculations 15

discussed above (e.g. Akkermans, Wolf and Maynard (1986) and van der 16

Mark, van Albada and Lagendijk (1988)), the enhancement of the cone 17

is always positive irrespective of angle and polarization channel. Thus 18

for a non-absorbing sample covering an infinite half-space (i.e. with a 19

reflectivity of 1), more intensity would be scattered back from the sample 20

than is incident. Obviously this cannot be, and there has to be a correction 21

to the angular intensity distribution at high angles, which compensates 22

for the enhancement in the back-direction. However, this correction is 23

small, and in order to observe it one needs to determine the incoherent 24
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background absolutely. This was not done so far (e.g., Wiersma, van1

Albada, van Tiggelen and Lagendijk (1995) and Störzer, Gross, Aegerter2

and Maret (2006)) and the backscattering cones thus obtained were well3

described by Equation (3). Figure 8 shows the result of such a correction.4

Here the incoherent reference was a teflon sample, where the absorption5

was determined using a time-of-flight measurement (Fiebig, Aegerter,6

Bührer, Störzer, Montambaux, Akkermans and Maret, 2007). Also shown7

in the figure is a corrected theory, taking into account the fact that time-8

reversed paths start to overlap when the mean free path gets smaller9

than the wavelength of light. This leads to an underpopulation on these10

paths and hence to a reduction of the backscattering enhancement. This is11

indicated in the sketch in Figure 9, where the overlap of two Gaussian12

distributed lightpaths is shown. Since this reduction takes place on a13

length scale of λ, the corresponding reduction of the backscattering14

enhancement is at high angles. To a first approximation, this correction15

can be calculated as (Fiebig, Aegerter, Bührer, Störzer, Montambaux,16

Akkermans and Maret, 2007):17

α(q) =
3/7

(1+ ql∗)2

(
1+

1− exp(−4/3ql∗)

ql

)
18

−
9π

7(kl∗)2

(
cos θ

cos θ + 1

)
. (8)19

The dashed line in Figure 8 is a fit of this equation to the backscattering20

data with kl∗ as the only fit parameter; it is in very good agreement with21

the data. Furthermore, the integrated intensity over the backscattering22

half-space of this expression (and of the corresponding data) is nearly zero23

for all values of kl∗, showing that, by including this correction, energy24

is indeed conserved for coherent backscattering. This result can also be25

obtained from diagrammatic theory (Akkermans and Montambaux, 2006).26

Here it can be shown that the Hikami-box (Hikami, 1981) describing27

coherent backscattering contains not only the most-crossed diagrams, but28

also those dressed with an impurity. These diagrams give a contribution29

of the same order, but negative. It can then be shown exactly that the30

integral over the whole Hikami-box is exactly zero, which corresponds31

to the conservation of energy.32

2.2 The Influence of a Magnetic Field3334

As discussed in detail above, coherent backscattering is fundamentally35

an interference effect due to the wave nature of light. In order to show36

this experimentally, one needs to change the phase of the light on37

counterpropagating paths, such that time-reversal symmetry is broken.38

A possible mechanism for the breaking of time-reversal symmetry is the39
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FIGURE 9 Illustration of the physics behind the reduction of the backscattering
enhancement. When the mean free path gets shorter, the end points of the multiple
scattering paths start to overlap. Describing these as Gaussian distributions with a
width λ, one obtains the correction of Equation (8)

application of a magnetic field. As shown by Faraday (1846), an applied 1

magnetic field will change the polarization angle of light passing through 2

a material. This is very pronounced for materials containing paramagnetic 3

rare-earth elements, as they possess absorption bands that lead to a 4

very strong Faraday effect. The magneto-optical rotation of a material is 5

quantified by the Verdet constant, which is the constant of proportionality 6

between the change in phase angle and the applied magnetic field times 7

the length of the light path. 8

Given the importance of time-reversal symmetry to coherent 9

backscattering and the possibility of influencing the phase of light inside 10

a multiple scattering medium via the Faraday effect, Golubentsev (1984) 11

and MacKintosh and John (1988) have theoretically studied the effect of a 12

medium with a high Verdet constant on the coherent backscattering cone. 13

Due to the fact that we are dealing with a multiple-scattering medium, 14

things are not so simple that it would suffice to project the multiple- 15

scattering path on to the applied field in order to obtain the mean angle 16

of rotation of the phase. In fact, because multiple scattering leads to a 17

depolarization of the light, the average rotation of the phase will be exactly 18

zero irrespective of the applied field and the path-length through the 19

material. However, MacKintosh and John (1988), in a model where every 20

scattering event is assumed to randomly change the polarization of the 21

light, found that the mean square displacement of the phase rotation does 22

follow the Faraday effect. They found that 23

〈1α2
〉 =

4
3

V 2 B2sl∗f , (9) 24

where s is the length of the path and l∗f is a length scale describing the 25

depolarization of the photons. This length scale will be of the order of 26
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the mean free path l∗, but will depend on the depolarization properties1

(and hence sizes) of the scattering particles. We will discuss a numerical2

investigation of these issues in more detail below. From this result it can3

be concluded that on path-lengths exceeding (l∗f (2V B)2)−1, photons on4

counterpropagating paths can no longer interfere with each other, such5

that localization is destroyed.6

Other effects of magnetic fields on light transport in random media7

have been discussed as well; these include the existence of the analogue8

of the Hall effect for photons (Rikken and van Tiggelen, 1996; Sparenberg,9

Rikken and van Tiggelen, 1997), as well as that of transverse diffusion of10

light (van Tiggelen, 1995).11

2.2.1 Destruction of the Backscattering Cone1213

As discussed above, for sufficiently strong magnetic fields, Verdet14

constants and path-lengths, the Faraday effect will lead to a suppression of15

interference of counterpropagating photons. As we have seen above, the16

cone tip is due to the longest paths, so that to a first approximation, one17

could describe the cone in the presence of a magnetic field by introducing18

the length scale (l∗f (2V B)2)−1 as an absorption length in the expression19

for the cone. With increasing field, this length scale decreases, such that20

eventually the cone should disappear completely. The field strength at21

which the cone would be reduced to half its size can be estimated by22

noting that the width corresponds to a length scale of l∗, so that (taking23

l∗f = 2l∗ for simplicity) B = 1/V l∗. For a molten Faraday active glass,24

with a Verdet constant of roughly 103 1/Tm and a mean free path of25

roughly 100 µm, one obtains a field of roughly 10 T. A corresponding26

experiment was carried out by Erbacher, Lenke and Maret (1993), who27

studied the field dependence of the backscattering cone in a Faraday-28

active glass powder in fields up to 23 T. As can be seen in Figure 10, the29

application of 23 T to the material leads to an almost complete destruction30

of the backscattering cone, in accordance with the theoretical prediction.31

For the theoretical curves, q2 was replaced by q2
+ q2

F , where qF = 2V B32

describes the depolarization due to the magnetic field.33

2.2.2 Polarization Effects3435

The simple helicity-flip model of MacKintosh and John (1988) provides a36

satisfactory description of the data when the incident light is parallel to the37

applied field. However, if the field is perpendicular to the illumination, the38

cone shape can no longer be described by a modified version of Equation39

(3), as was shown by Lenke, Lehner and Maret (2000). In fact, as can40

be seen in the left-hand panel of Figure 11, the backscattering cone may41

even split into two peaks, which then diminish in intensity. In order to42

describe these data, the polarization dependence of the scattering process43

has to be taken into account, which goes beyond the helicity-flip model44
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FIGURE 10 Destruction of the backscattering cone by a magnetic field. The left-hand
panel illustrates the destruction of the cone in both angular dimensions, while the
right-hand panel describes the reduction of the enhancement as a function of
different applied fields. The data are from Lenke and Maret (2000)

and has to be done numerically. Such an investigation was carried out by 1

Lenke and Maret (2000). In their treatment, Faraday rotation takes place 2

only between scattering events, as is the case in the helicity-flip model 3

of MacKintosh and John (1988), but at each point in a simulation of a 4

random walk, the full scattering matrix of Rayleigh–Debye–Gans theory is 5

applied to the polarization. The result of such a simulation is shown in the 6

right-hand panel of Figure 11. As can be seen by comparing both parts of 7

the figure, the simulation can qualitatively describe the data. Physically, 8

this splitting of the cone peak is due to the fact that in this transverse 9

setup there is a net, magnetic-field dependent phase change on the time- 10

reversed paths given by the end-to-end distance. This phase difference 11

needs to be compensated for by the phase change due to the path-length 12

difference at different angles. For circular polarization, this leads to a shift 13

of the peak, whereas in linear polarization, the different angular directions 14

are equivalent, such that a splitting of the cone peak is observed (Lenke 15

and Maret, 2000). 16

In this description, the magnetic-field effects on the backscattering cone 17

are fundamentally determined by the length scale l∗f , which describes 18

the polarization. For Rayleigh scattering, it can be shown that l∗f = 19

2l∗(Lenke and Maret, 2000). However, as the scattering particles increase 20

in size, Mie theory has to be used to describe the polarization effects 21

of each scattering event. This has been studied by Lenke, Eisenmann, 22

Reinke and Maret (2002) for different-sized particles of the order of the 23
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FIGURE 11 The influence of the field direction and the incident polarization on the
backscattering cone in a magnetic field. Experimental data are on the left, simulation
results on the right. If the field is not applied parallel to the incident light, the
destruction of the cone cannot be described by a modified version of Equation (3).
However, a simulation taking into account the full scattering matrix for all scattering
events on a multiple scattering path can describe the data. Adapted from Lenke and
Maret (2000) and Lenke, Lehner and Maret (2000)

wavelength of light, where good agreement is found with the predictions1

from Mie theory.2

2.3 Cold Atoms34

With the advent of laser cooling and the corresponding successes in5

cooling atomic gases to very low temperatures, a new field of investigation6

of multiple scattering has been opened. Due to the fact that in a cold7

cloud of atoms all scatterers are identical, one can exploit the properties of8

resonant scattering in order to increase the scattering cross-section many-9

fold. In the future this may allow a reduction of kl∗ for these samples10

to such values that the Ioffe–Regel criterion is fulfilled and Anderson11

localization can be observed. So far however, only the backscattering cone12

has been observed and the situation has proved to be somewhat more13

complicated than was hoped at first. This is because of the importance of14

microscopic degrees of freedom in atomic scattering, which can greatly15

influence, e.g., time-reversal symmetry. This will be discussed in detail16

below, and can lead to the observation that the backscattering cone is not17

destroyed by the presence of a magnetic field as we have seen above, but18

rather is recovered due to a magnetic field. At present, investigations of19

multiple scattering of light in cold atomic gases are limited to Rb and Sr,20

which show vastly different behaviours due to their different ground-state21

degeneracies.22

2.3.1 Rb Atoms2324

Due to the fact that the cooling of Rb atoms is well known and understood,25

the first backscattering cones from cold atomic gases were scattered26
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FIGURE 12 Backscattering cone from a cloud of cold Rb atoms (left panel shows data
from Labeyrie, de Tomasi, Bernard, Müller, Miniatura and Kaiser (1999), right panel
shows data from Kupriyanov, Sokolov, Kulatunga, Sukenik and Havey (2003)). Note
that the enhancement factor is very low compared to that seen for colloidal
suspensions or powders. This is connected to the internal degrees of freedom of the
atoms in question as will be discussed in the text. Reproduced with permission from
Labeyrie, de Tomasi, Bernard, Müller, Miniatura and Kaiser (1999) and Kupriyanov,
Sokolov, Kulatunga, Sukenik and Havey (2003) c© 1999, and 2003 American Physical
Society

by Rb atoms (Labeyrie, de Tomasi, Bernard, Müller, Miniatura and 1

Kaiser, 1999; Kupriyanov, Sokolov, Kulatunga, Sukenik and Havey, 2003). 2

However, as can be seen in Figure 12, the observed enhancement is 3

only between 1.1 and 1.15, much smaller that that observed in colloidal 4

suspensions and powders. Due to the internal structure of the Rb atoms, 5

especially the fact that the ground state is degenerate, time-reversal 6

symmetry is partially broken. This is similar to the Faraday rotation 7

effects discussed above for colloidal powders. The degeneracy of the 8

ground state may lead to a change in helicity of the photon during a 9

scattering event, by changing the ground state of the atom (Jonckheere, 10

Müller, Kaiser, Miniatura and Delande, 2000). This could be treated by 11

a model similar to the helicity-flip model (MacKintosh and John, 1988) 12

devised to take into account the effect of Faraday rotation inside a material 13

with high Verdet constant. Müller, Jonckheere, Miniatura and Delande 14

(2001) calculated this explicitly and found good agreement with the 15

experimental reduction of the cone enhancement (Labeyrie, de Tomasi, 16

Bernard, Müller, Miniatura and Kaiser, 1999). They also found that 17

different orders of scattering contribute differently to the effect. In fact, if 18

only double scattering were taken into account, the reduction effect would 19

be much less pronounced, with enhancement factors of up to 1.7 being 20

possible (Jonckheere, Müller, Kaiser, Miniatura and Delande, 2000). By 21



26 Christof M. Aegerter and Georg Maret

1.5

1.0

2.0

E
nh

an
ce

m
en

t f
ac

to
r

–1 0 1–2 2
Δ  (mrad)θ

FIGURE 13 Backscattering cone from a cloud of cold Sr atoms (Bidel, Klappauf,
Bernard, Delande, Labeyrie, Miniatura, Wilkowski and Kaiser, 2002). Here, almost
perfect enhancement is observed due to the fact that the magnetic moment of Sr
does not allow for internal degrees of freedom to be scattered from. Reproduced with
permission from Bidel, Klappauf, Bernard, Delande, Labeyrie, Miniatura, Wilkowski
and Kaiser (2002) c© 2002, American Physical Society

lifting this degeneracy using an applied magnetic field, the enhancement1

of the backscattering cone could be recovered.2

2.3.2 Sr Atoms34

In order to be able to study a system with a good enhancement factor in5

the absence of a magnetic field, one needs to use a cloud of atoms with6

a non-degenerate ground state. This is much more difficult as the cooling7

transitions are harder to excite in this case. However, using Sr atoms it was8

possible to cool a cloud sufficiently to observe a coherent backscattering9

cone (Bidel, Klappauf, Bernard, Delande, Labeyrie, Miniatura, Wilkowski10

and Kaiser, 2002). The resulting cone is shown in Figure 13 and has an11

enhancement factor of nearly two in accordance with expectation. Thus12

the study of Sr clouds may hold the promise of increased coherence13

length, such that multiple-scattering samples with very long coherent14

light paths can be studied. This may then lead to the observation of15

Anderson localization in such samples.16

In this context it should be noted, however, that due to the exploitation17

of resonance scattering to reduce the mean free path, the propagation18

speed of photons is slowed down remarkably (Labeyrie, Vaujour, Müller,19

Delande, Miniatura, Wilkowski and Kaiser, 2003). This means that the20

increased dwell time in the scattering cavity may also lead to a loss of21

coherence due to the motion of scatterers on this time scale. This was22

investigated using Monte Carlo simulations by Labeyrie, Delande, Müller,23

Miniatura and Kaiser (2003), who showed that only a few scattering24

events are taking place with coherent light, such that the long multiple-25

scattering paths necessary for Anderson localization to occur are out of26
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reach. We will get back to the point of reduced transport velocity due to 1

resonant scattering in the discussion of colloidal powders below. 2

2.4 Other Types of Waves 34

In addition to localization of light waves and electronic waves, localization 5

has been searched for in many other types of waves. Given the difficulties 6

faced by electron localization due to the presence of interactions, these 7

studies have focused on non-interacting waves, such as acoustic, seismic 8

and matter waves. Due to the fact that strong scattering cross-sections are 9

difficult to obtain in these waves, most studies have concentrated on the 10

observation of weak localization. 11

2.4.1 Seismic Waves 1213

Multiple scattering of seismic waves has become a very interesting subject, 14

leading, for instance, to an increased precision in the determination of the 15

earth’s structure from the noise in seismographs (Snieder, Grêt, Douma 16

and Scales, 2002; Campillo and Paul, 2003; Shapiro, Campillo, Stehly and 17

Ritzwoller, 2005). In the context of interest here, Larose, Margerin, van 18

Tiggelen and Campillo (2004) have studied the reflection of a stimulus 19

from a sledge hammer that was repeated fifty times for each measurement 20

as a function of distance from the source. The results are shown in 21

Figure 14. The different lines correspond to different delay times between 22

the stimulus and the reflected signal. As expected from the theoretical 23

description above, the backscattering cone arises from long multiple- 24

scattering paths, such that the signal only appears at long delay times. 25

In particular, as can be seen in the figure, an enhancement factor of two 26

can be observed from the long paths observed at late times. 27

In order to be able to observe this enhancement, i.e. to suppress any 28

incoherent background, the experiment was carried out at night in a 29

sparsely populated region as well as under anticyclonic conditions. 30

2.4.2 Acoustic Waves 3132

Well before the study of seismic waves propagating in disordered media, 33

the behaviour of multiple scattered ultrasonic waves in the MHz range 34

was investigated. Kirkpatrick (1985) has theoretically calculated the 35

properties of localized waves in a random medium, and Bayer and 36

Niederdränk (1993) have experimentally studied the backscattering cone 37

from, e.g., gravel, using ultrasonic waves. This was done in both two- and 38

three-dimensional systems and good agreement with theory was found, 39

as illustrated in Figure 15. 40

There have also been experiments studying time-resolved transmission 41

of acoustic waves through samples of aluminium beads by Page 42

(Page, J.H. (2007) private communication). In these experiments, a non- 43

exponential decay of the time-resolved transmission was found. As will 44
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Tiggelen and Campillo (2004). The different lines show the signal of buried
seismographs at a certain distance from the stimulus as a function of delay time.
After prolonged times, the multiply scattered paths in the back-direction show a
coherent backscattering cone with an enhancement factor of nearly 2. Reproduced
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FIGURE 15 Backscattering cone of ultrasonic waves through (left) gravel stones and
(right) brass rods. These data were obtained by Bayer and Niederdränk (1993). The
thin lines show the theoretical expectation (Kirkpatrick, 1985), whereas the thick lines
show the experimental results. The data correspond to signals at a certain time delay,
similar to those of the seismic waves in Figure 14 of 22 µs and 40 µs, respectively.
Reproduced with permission from Bayer and Niederdränk (1993) c© 1993, American
Physical Society

be discussed below in the context of light, this is a strong indication1

of non-classical transport and localization. In addition, Page (Page, J.H.2

(2007) private communication) studied the statistics of speckles for these3

samples, and again found strong deviations from the behaviour of diffuse4

waves.5
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2.4.3 Matter Waves 12

Two different types of matter waves are presently the subject of 3

localization efforts. In the first instance, the advent of laser cooling and 4

optical traps has led to the proposal of studying Anderson localization 5

of cold atoms in disordered optical traps. These optical traps are usually 6

provided by a speckle pattern from a laser source passed through a 7

disordered medium. It has been found however that in that case, the 8

average spacing of the speckle spots is difficult to reduce to a scale 9

where the Ioffe–Regel criterion can be reached (Lye, Fallani, Modugno, 10

Wiersma, Fort and Inguscio, 2005; Clément, Varón, Hugbart, Retter, 11

Bouyer, Sanchez-Palencia, Gangardt, Shlyapnikov and Aspect, 2005; 12

Kuhn, Miniatura, Delande, Sigwarth and Müller, 2005). In addition, dense 13

clouds of cold atoms are troubled by strong interactions, such that a 14

Mott insulator can be observed, but Anderson localization is still out of 15

reach in present experiments. In fact, no observation of a backscattering 16

cone of cold atoms in disordered optical lattices has been reported to date. 17

A second type of proposal is to localize ultracold neutrons in the 18

presence of disorder (Igarashi, 1987). Here, progress has been made in 19

cooling the neutrons sufficiently to be able to observe their multiple 20

scattering. The angular resolution of neutron detectors is, however, not 21

sufficient at present to observe the corresponding, narrow backscattering 22

cone (Stellmach, Abele, Boucher, Dubbers, Schmidt and Geltenbort, 2000; 23

Stellmach, 1998). 24

3. THE TRANSITION TO STRONG LOCALIZATION 2526

In the experiments described above, the critical parameter for localization, 27

the disorder as measured by (kl∗)−1, was small compared to unity. 28

However, the effects of weak localization could still be observed as there 29

is a counterpropagating path to every path in the back-direction. In order 30

to see the effects of strong localization, one needs to strongly increase 31

the probability of formation of closed loops, so that the renormalization 32

discussed in the theory part becomes important. This can be done in 33

principle by increasing the disorder so as to reach the limit proposed 34

by Ioffe and Regel (1960). In practice however, this turns out to be 35

difficult as one needs to have samples with both strong scattering and 36

low absorption, two conditions which are usually mutually exclusive. 37

However, it can be accomplished by making use of the properties of 38

Mie-resonances in the scattering cross-section (Mie, 1908), as we will 39

see below. On the other hand, spatially restricting the propagation will 40

lead to a strong increase in the probability of observing crossings of the 41

paths. This is exploited in the study of quasi-one-dimensional systems 42

where localization of microwaves has been observed (see, e.g., Chabanov, 43

Stoytchev and Genack (2000)). 44
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3.1 Low-dimensional Systems12

Low-dimensional systems present several advantages for studying3

localization. First of all, scaling theory predicts that in less than two4

dimensions, localization will always be present (Abrahams, Anderson,5

Licciardello and Ramakrishnan, 1979). The occurrence of localization will6

in this case go together with the increase in system size, and localization7

effects can be observed for large enough samples. The spatial restriction8

in quasi-one-dimensional samples leads to a natural reduction of the9

dimensionless conductance, thus leading to the presence of localization10

even far above the turbidity demanded by Ioffe and Regel (1960). This,11

in turn, also implies that the transition to localization cannot be studied12

in low-dimensional systems, and a proper study of the scaling theory of13

localization requires three-dimensional systems.14

The most successful experimental low-dimensional system so far15

constitutes a quasi-one-dimensional case, where alumina spheres with a16

diameter of roughly a centimeter are placed inside a copper tube with17

a diameter of 7 cm and a length of roughly one meter (Chabanov and18

Genack, 2001). The alumina particles then scatter microwaves, which are19

contained in the copper tube as in a wave guide, thus producing the quasi-20

one-dimensional character of the system.21

3.1.1 Statistical Features2223

The transmitted microwave intensity through the cavity shows strong24

fluctuations as a function of input frequency (see Figure 16a). Such25

fluctuations always arise in the case of a multiple-scattering sample.26

They arise from interferences of the randomly distributed field and27

are known as speckle. Due to the fact that speckle originates from28

a random distribution of fields it is easy to show that a diffusive29

speckle shows an exponential intensity distribution. As can be seen in30

Figure 16b, in the case of a quasi-one-dimensional sample longer than the31

localization length, the intensity distribution of the fluctuations is much32

wider than the exponential distribution expected for a diffusive speckle33

indicated by the dashed line (Chabanov, Stoytchev and Genack, 2000).34

The intensity distribution is instead given by a stretched exponential with35

an exponent of 1/3 (Chabanov, Zhang and Genack, 2003), in agreement36

with the prediction of Kogan, Kaveh, Baumgartner and Berkovits (1993),37

whereas Nieuwenhuizen and van Rossum (1995) have predicted a38

stretched exponential with an exponent of 1/2. This result was later39

confirmed by Kogan and Kaveh (1995).40

The advantage of studying the fluctuations of the intensity rather than41

the static intensity is that this measure is not affected by the presence42

of absorption. As we will see in the discussion of static transmission43

measurements in three-dimensional samples, the presence of absorption44

can be a great problem in identifying localization from transmission45
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(a) (b)

FIGURE 16 Measurements of the fluctuations of photons in a quasi-one-dimensional
sample of alumina spheres obtained by Chabanov, Zhang and Genack (2003). (a) The
intensity as a function of input frequency for a certain realization of the disorder in the
tube. (b) Averaging over many realizations of the disorder, the intensity probability
distribution is obtained. This shows clear deviations from the classical exponential
distribution and instead shows a stretched exponential with an exponent of 1/3
(Chabanov, Zhang and Genack, 2003). Reproduced with permission from Chabanov,
Zhang and Genack (2003) c© 2001, American Physical Society

measurements alone. In addition to the probability distribution of 1

the speckle intensities, Sebbah, Hu, Klosner and Genack (2006) have 2

measured the spatial distribution of the localized modes. 3

3.1.2 The Path-Length Distribution 45

Another strategy for avoiding problems with absorption influencing 6

the interpretation of experimental results is to study time-resolved 7

transmission. This will be discussed in more detail below in the context 8

of three dimensional systems, but time-resolved measurements were 9

also carried out in the quasi-one-dimensional system described above 10

by Chabanov and Genack (2001). The results of such measurements are 11

shown for four different samples in Figure 17. The samples differ in tube 12

length, ranging from 61 cm (sample A) to 183 cm (sample C). Samples 13

B and D are both 90 cm long but in sample D the absorption was artificially 14

enhanced by adding a titanium foil to the tube. 15

The data in Figure 17 are shown on a semi-logarithmic scale and show 16

a slight deviation from the purely exponential decrease at long times 17

expected from diffusion. This is shown more clearly in the lower part of 18

the figure, which shows the derivative of the logarithm of the intensity 19

with respect to time. At long times, this should be a constant given by 20

a combination of the absorption length and the diffusion coefficient. As 21

can be seen, the diffusion coefficient instead decreases with time, which is 22

most prominent for sample A. In addition, comparison of samples B and D 23

shows that indeed a change in absorption only leads to a constant shift 24
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FIGURE 17 Measurements of the path-length distribution of photons in a
quasi-one-dimensional sample of alumina spheres of different lengths as obtained by
Chabanov and Genack (2001). As can be seen from the lower part of the figure, the
diffusion coefficient in these samples shows a time dependence indicating a
breakdown of diffusion due to the presence of pre-localized states. Reproduced with
permission from Chabanov and Genack (2001) c© 2001, American Physical Society

in the decay rate and thus does not influence the results of the time1

dependence shown in the figure.2

In contrast to the results in three dimensions to be discussed below,3

the diffusion coefficient here decreases linearly with time. This decrease is4

obtained from weak localization corrections in the quasi-one-dimensional5

case as discussed by Cheung, Zhang, Zhang, Chabanov and Genack (2004)6

and Skipetrov and van Tiggelen (2004).7

3.1.3 The Connection to Bulk Experiments89

As mentioned above, experiments in quasi-one-dimensional systems10

exploit the increased probability of paths crossing due to the constricted11

geometry. As a matter of fact, a similar approach was used by Scheffold,12

Härtl, Maret and Matijević (1997) and Scheffold and Maret (1998) to study13

the universal conductance fluctuations of light, which are suppressed by14

a factor of 1/g2 compared to the usual fluctuations. These experiments15

were carried out in a colloidal suspension of TiO2 particles with values16

of kl∗ of the order of 20. This shows that a geometric confinement gives17
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FIGURE 18 The number of diffusive modes is inverse to the probability of crossings
of paths inside the sample. For very constrained samples, such as in the case of the
quasi-one-dimensional microwave experiments or the measurements on universal
conductance fluctuations, the probability of crossings is high and thus the number of
modes, i.e. the control parameter for localization, is low. Adapted with permission
from Scheffold and Maret (1998) c© 1999, American Physical Society

rise to mesoscopic effects (Figure 18); these are similar to the bulk effects 1

of Anderson localization in that they depend on interference between 2

different paths, but they are due solely to geometric effects and thus 3

should not be confused with bulk Anderson localization. 4

In fact, when estimating the dimensionless conductance (Scheffold 5

and Maret, 1998) for a true bulk sample with dimensions of roughly 6

104 l∗, one finds that g is very large. For the samples with very low 7

values of kl∗ discussed below, one obtains g ≈ 104(Aegerter, Störzer 8

and Maret, in press). This demonstrates that in bulk samples, the critical 9

parameter is indeed kl∗ as opposed to g, and one cannot think of the 10

problem in terms of separated modes. This difference also clearly shows 11

up in the self-consistent theory of Skipetrov and van Tiggelen (2004) 12

adjusted for finite systems. In the quasi-one-dimensional case (Skipetrov 13

and van Tiggelen, 2004) there are pre-localized states and a cross-over 14

to localization, whereas in the three-dimensional version of the theory 15

(Skipetrov and van Tiggelen, 2006) there are no pre-localized states and 16

diffusion only breaks down at later times. 17

3.2 Static Measurements 1819

Static measurements have the strong advantage experimentally of being 20

reasonably simple to set up. However, in terms of observing localization, 21

there is a great problem with most static measurements insofar as a 22

photon that is lost due to absorption cannot be distinguished from 23

one lost due to localization. Thus, pure measurements of numbers of 24

photons either in transmission or reflection are difficult to interpret in 25

the context of localization. One way around this will be discussed at 26

the end of this chapter; it consists of studying the fluctuations of the 27

static intensity (i.e. the speckle). There, the interference terms are of great 28

importance, so that one does not simply look at numbers of photons, and 29

the effects of localization and absorption can be distinguished (Chabanov, 30
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Stoytchev and Genack, 2000). Another possibility is offered by time-1

resolved measurements, which will be discussed in the next subsection.2

3.2.1 Decrease in Transmission34

As discussed above, localization will lead to a strong decrease in5

the transmission of photons through the sample. In fact, due to the6

renormalization of the diffusion coefficient, the dependence of the7

transmission on the sample thickness can be predicted. In the critical8

regime, where there is no length scale in the diffusion left, scaling theory9

predicts that the diffusion coefficient will decrease as 1/L(Abrahams,10

Anderson, Licciardello and Ramakrishnan, 1979). This leads to a decrease11

in transmission proportional to 1/L2(Anderson, 1985; John, 1984). Deep12

in the localized regime, where the diffusion coefficient vanishes, the13

transmission will be suppressed exponentially, as only the tails of14

the probability distribution are capable of leaving the sample at the15

boundary (Anderson, 1985; John, 1984). These predictions have been16

at the basis of an experimental search for localization using static17

transmission measurements of strongly scattering samples (Wiersma,18

Bartolini, Lagendijk and Righini, 1997). In this work, the transmission19

properties of ground samples of GaAs were studied in the near infrared,20

at a wavelength of 1064 nm. For different degrees of grounding and21

hence different average particle sizes, marked differences in the thickness22

dependence of transmission were observed. The scattering properties of23

the samples were characterized using the initial slope of the coherent24

backscattering cone, yielding a value of kl∗.25

The results for a sample consisting of particles with an average diam-26

eter of 1 µm are reproduced in Figure 19. As can be seen in the figure,27

there are deviations from the expected 1/L behaviour corresponding to28

diffusion. The theoretical prediction shown by the dashed line however,29

is in strong contradiction with a simple understanding of localization.30

As shown in the figure, the deviations from classical transmission due31

to localization lead to an increase in static transmission, which is physi-32

cally impossible. Moreover, the deviations increase with decreasing sam-33

ple thickness, again in contradiction with a physical understanding of the34

situation. The theoretical prediction of classical diffusion was obtained35

from the measurement of kl∗ due to the initial slope of the backscatter-36

ing cone. This yields a mean free path of 0.17 µm and a corresponding37

value of kl∗ = 1. The transmission measurements from thin samples are,38

however, more consistent with a value of kl∗ ≈ 5. In this case the devia-39

tions in thicker samples are such that the number of transmitted photons40

decreases compared to the classical expectation. This implies that the de-41

termination of kl∗ from the initial slope of the backscattering cone is sys-42

tematically flawed and underestimates the value of kl∗. As we have seen43

above, absorption can lead to a rounding of the cone tip. Such a rounding44



Coherent Backscattering and Anderson Localization of Light 35

FIGURE 19 Static transmission through samples of GaAs of average particle size
∼ 1 µm(Wiersma, Bartolini, Lagendijk and Righini, 1997). As can be seen, the thickness
dependence of the transmission does not follow a 1/L dependence. However, the
dashed line in the figure indicating classical diffusion is inconsistent with a physical
interpretation of the data. Any physical effect, be it localization or absorption, would
lead to decreased transmission as compared to the classical expectation, whereas the
dashed line in fact indicates an increased transmission with respect to the diffusive
expectation. This is most probably due to the fact that the value of kl∗ is
underestimated due to neglect of absorption in the sample (see text and Figure 20)

strongly influences the initial slope of the cone, while leaving the width 1

more or less unchanged. Thus the presence of absorption may very well 2

lead to an underestimation of kl∗ from the initial slope of the backscatter- 3

ing cone, whereas an estimate from the width of the cone is less suscep- 4

tible to absorption. This is corroborated by the fact that the value of kl∗ 5

estimated above is in good agreement with a re-analysis of the cone shape 6

using the width of the cone to determine kl∗ and including absorption, 7

shown in Figure 20(Scheffold, Lenke, Tweer and Maret, 1999). 8

This re-analysis also leads to an estimation of the absorption length of 9

La ≈ 8 µm, which is consistent with the transmission data, again shown 10

in Figure 20. This means that the deviations from diffusive behaviour 11

are most probably due to an increased absorption induced by the longer 12

grinding. Such absorption may for instance be due to the increased 13

appearance of surface states. 14

For even smaller particle sizes (average diameter 300 nm), Wiersma, 15

Bartolini, Lagendijk and Righini (1997) obtain an exponential decrease 16

of transmission with a typical length scale of L ≈ 5 µm. Supposing, 17

in the absence of absorption, that with decreasing particle size the 18

mean free path also decreases, this would be in accordance with the 19

prediction of Anderson localization in the localized regime (Anderson, 20

1985; John, 1984). Unfortunately however, the scattering properties of 21

this sample were not characterized by any measurement, so we do not 22
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FIGURE 20 The data of Wiersma, Bartolini, Lagendijk and Righini (1997) (see
Figure 19) as re-analysed by Scheffold, Lenke, Tweer and Maret (1999). In this
analysis, the influence of absorption has been taken into account as well. Thus, the tip
of the cone is rounded and the slope at that point cannot be used for a reliable
estimate of kl∗. The analysis of the cone shape (right-hand side) yields a value of
kl∗ ≈ 5 and an absorption length of La ≈ 8 µm, which fits the data very well. Using
these parameters, the static transmission measurements on the left-hand side can be
described without additional parameters. The inclusion of absorption yields the solid
line, whereas the classical expectation is given by the dashed line. Note that in
contrast to Figure 19, the expectation for pure diffusion is above the data, as it
should be

know what the value of kl∗ for this sample should be. This also makes1

it impossible to estimate the absorption length of this sample. Based on2

the above arguments, absorption will be present also in this sample and3

the corresponding absorption length would not be inconsistent with the4

length scale of the exponential decrease in transmission. Furthermore,5

the decrease in kl∗ with particle size is certainly not linear and will6

certainly show a minimum as the scattering cross-section decreases when7

the particle size is much smaller than the wavelength of light. Therefore8

it is questionable whether or not the scattering strength of this sample9

will be strong enough to be beyond the Ioffe–Regel criterion. In addition,10

in the absence of an independent determination of the absorption length,11

an exponential decrease of transmission cannot be claimed to be due to12

localization, as absorption is a much more likely candidate.13

This is illustrated in Figure 21, which shows the static transmission14

through a sample with kl∗ ≈ 20(Aegerter, Störzer and Maret, in15

press). For very thick samples, absorption will always dominate and16

a simple comparison with the expectation from diffusion (dotted line)17

will always overestimate the transmission. However, in this case, the18

absorption length was determined directly as well, using time-resolved19

measurements (see below). Adding this to the description yields the20

dashed line, which perfectly describes the data without a single adjustable21

parameter. Here the shaded area between the dashed lines indicates the22

error bar in the experimental determination of the absorption length.23
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(a)

FIGURE 21 Even for a classical sample (with kl∗ ≈ 20) that appears white and which
does not show significant rounding of the backscattering cone, absorption may be
high enough to produce an exponential decrease in transmitted intensity, which
appears incompatible with classical diffusion of light (dotted line) (Aegerter, Störzer
and Maret, in press). When determining the absorption length using time-resolved
measurements (see below), the resulting exponential decrease (dashed line) fits very
well with the static measurements

For samples with much lower values of kl∗ ≈ 2.5, which also show 1

effects of localization in time-resolved measurements (i.e. a spatially 2

dependent diffusion coefficient, see below) the situation is markedly 3

different (Aegerter, Störzer and Maret, 2006). This is shown in Figure 22. 4

Again the dotted line, corresponding to diffusion in the absence of 5

absorption, strongly overestimates the transmission through the samples. 6

However, the description including the experimentally determined 7

absorption (dashed line) is in contradiction with the data as well. Thus 8

in this case the reduced transmission is most probably due to localization 9

of photons. This conclusion is strongly supported by the fact that the time- 10

resolved measurements also allow a determination of the localization 11

length (see below). Including this in the description of the transmission 12

measurements yields the solid line, which describes the data perfectly 13

over twelve orders of magnitude and without any adjustable parameters. 14

This shows that in static transmission measurements, the problem of 15

absorption may be circumvented by an independent determination of 16

the absorption length. This is most conveniently done in time-resolved 17

measurements as we will discuss below. 18

3.2.2 Influence on the Cone Shape 1920

As discussed above, the renormalization of the diffusion coefficient 21

arising from localization can also be treated as a path-length depen- 22

dence of D(van Tiggelen, Lagendijk and Wiersma, 1995). Since the tip 23
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FIGURE 22 Static transmission measurements through a localizing sample as shown
by a long-time tail in time-resolved transmission (Aegerter, Störzer and Maret, 2006).
As will be shown below, in this case it is possible to determine not only the
absorption length, but also the localization length. Again, the dotted line represents
the expectation from pure diffusion and the dashed line that of diffusion including
absorption. Both curves are incompatible with the measurements, and satisfactory
description of the data becomes possible only upon incorporating the experimentally
determined localization length. In fact, there is good agreement between theory and
experiment over twelve orders of magnitude without any adjustable parameters

of the backscattering cone consists mostly of photons from long paths,1

such a path-length dependence of the diffusion coefficient should also2

be visible in the tip of the cone, as a decrease of the slope as the tip is3

approached. This effect has been calculated explicitly in the framework4

of self-consistent theory by van Tiggelen, Lagendijk and Wiersma (1995).5

Their main result is shown in Figure 23, where the decrease of the diffu-6

sion coefficient inside the sample is shown together with the correspond-7

ing rounding of the cone tip. As discussed above, however, absorption8

also leads to a rounding of the cone at small angles due to the lack of9

photons coming from very long paths. Unfortunately, van Tiggelen, La-10

gendijk and Wiersma (1995) obtain a diffusion coefficient which decreases11

exponentially with sample thickness (analogous to the exponentially de-12

creasing transmission), so that the effect of localization again has the same13

shape as that of absorption. This means that, as in the case of static trans-14

mission measurements discussed above, measurements of cone-rounding15

can only be used as arguments for the observation of localization in the16

presence of data on the absorption properties of the samples.17

Indeed, as a function of sample thickness, Schuurmans, Megens,18

Vanmaekelbergh and Lagendijk (1999) find an increasing rounding of the19

cone when the thickness is decreased, as demanded by theory (van der20
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FIGURE 23 The influence of localization on the tip of the backscattering cone. Due to
the fact that photons on long paths are localized and therefore no longer contribute to
the backscattered light, the cone shape is rounded close to the backscattering
directon. Plotted here are results from a self-consistent theory assuming a spatially
dependent diffusion coefficient calculated by van Tiggelen, Lagendijk and Wiersma
(1995). The left-hand panel shows the spatial dependence of the diffusion coefficient,
while the right-hand panel gives the corresponding tip of the backscattering cone. The
dashed line on the right is the classical cone shape in the absence of localization
effects. Reproduced with permission from van Tiggelen, Lagendijk and Wiersma
(1995) c© 2000, American Physical Society

Mark, van Albada and Lagendijk, 1988). Samples with reasonably high kl∗ 1

(shown as solid triangles and open squares in Figure 24) are well described 2

by the linear increase of the cone-rounding with 1/kL . For samples with 3

smaller values of kl∗ however, there are marked deviations for thicker 4

samples. In order to determine the influence of absorption, Schuurmans, 5

Megens, Vanmaekelbergh and Lagendijk (1999) filled the photoanodically 6

etched GaAs sample with dodecanol, showing increased cone-rounding 7

(see Figure 5). This leads to an increase in kl∗ as can be seen from a 8

decrease in the width of the backscattering cone (see Figure 25). Hence the 9

absorption length is also increased according to La ∝
√

l∗la . A description 10

of the dependence of the cone-rounding on sample thickness of the non- 11

filled sample due to absorption (dashed line in Figure 24) is not compatible 12

with the thickness dependence of the cone-rounding of the filled sample. 13

However, one has to note that in this calculation, Schuurmans, Megens, 14

Vanmaekelbergh and Lagendijk (1999) did not take into account the 15

narrowing of the cone due to internal reflections. The filling of the etched 16

holes will lead to a change in the effective refractive index and hence to 17
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FIGURE 24 The rounding of the cone shown in Figure 5 as a function of sample
thickness for different samples (Schuurmans, Megens, Vanmaekelbergh and
Lagendijk, 1999). For low values of kl∗ (open circles), there are deviations from the
expectation of a finite sample. This is in contrast to samples with a higher kl∗ (solid
triangles and open squares). The open squares are from a similar sample to the open
circles, where the pores have been filled with dodecanol. The solid line is a
description of the data with absorption. Assuming an unchanged absorption with
pore-filling, the dashed line should then correspond to the open squares. Reproduced
with permission from Schuurmans, Megens, Vanmaekelbergh and Lagendijk (1999)
c© 1999, American Physical Society

a change in the value of kl∗ determined from the cone width. Thus the1

filling of the voids may well lead to a decrease in the refractive index2

and hence to an underestimation in the increase in kl∗. Due to these3

uncertainties a direct determination of the absorption length in the low-4

kl∗ samples would have been very useful in order to check whether effects5

of absorption can be ruled out. In addition, subsequent time-resolved6

experiments on the same samples by Rivas, Sprik, Lagendijk, Noordam7

and Rella (2000) and Johnson, Imhof, Bret, Rivas and Lagendijk (2003)8

did not show effects of localization in the time domain. While this could9

be due to the fact that the time-resolved measurements were done on10

thinner samples (see also below), we note that the transmission data of11

Johnson, Imhof, Bret, Rivas and Lagendijk (2003) can be described with an12

absorption length corresponding to the solid line in Figure 24. It therefore13

would seem that the increased cone-rounding observed in these samples14

cannot be used as an indication of the onset of Anderson localization as15

long as absorption is not quantified.16

3.2.3 Transport Speed1718

Another quantity that can be determined from static measurements is19

the transport speed of photons in multiple scattering. Since the strong20
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FIGURE 25 The backscattering cones for photoanodically etched GaP both as
produced and filled with dodecanol (Schuurmans, Megens, Vanmaekelbergh and
Lagendijk, 1999). As can be seen, the cone of the filled material is narrower, indicating
an increase in kl∗. Figure 24 has shown that for the filled samples, significantly less
cone-rounding has been observed. Reproduced with permission from Schuurmans,
Megens, Vanmaekelbergh and Lagendijk (1999) c© 1999, American Physical Society

scatterers employed in the search for Anderson localization are roughly 1

of the same size as the wavelength to increase the scattering cross- 2

section, these particles also show resonant scattering (Wigner, 1955). This 3

was first discussed by van Albada, van Tiggelen, Lagendijk and Tip 4

(1991) in the context of multiple scattering. Contrary to what might be 5

thought intuitively, the resonant scattering properties are still present 6

after averaging over the random distribution of scatterers in multiple 7

scattering. This leads to a strong decrease in the transport speed of 8

photons, as can be seen in Figure 26, where the speed of light is shown as 9

a function of particle size. These results were obtained from a calculation 10

using the properties of TiO2 with a filling fraction of 36 per cent. It 11

shows that earlier measurements of anomalously low values of the 12

diffusion coefficient in TiO2 samples by Drake and Genack (1989) were 13

most probably due to resonant scattering, reducing the transport speed 14

and hence the diffusion coefficient, and not to the onset of Anderson 15

localization. Subsequently, these calculations were improved by Busch 16

and Soukoulis (1996) and Soukoulis and Datta (1994) to also be valid for 17

higher filling fractions more appropriate to describe experiments. Using 18

a combination of time-resolved transmission measurements (see below) 19

and coherent backscattering measurements, Störzer, Aegerter and Maret 20

(2006) measured the transport speed directly for a number of samples with 21

different sizes. These measurements clearly show resonant reductions in 22

the transport speed. The results are shown in Figure 27 and compared 23
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FIGURE 26 Calculation of the transport velocity as a function of the size parameter
van Albada, van Tiggelen, Lagendijk and Tip (1991). The calculations were done for
particles with a refractive index of 2.72, corresponding to that of TiO2 in the rutile
structure, and for a filling fraction of 3 per cent. Due to the fact that correlations
between different scatterers are not taken into account in the calculation, the theory
does not fully apply at high filling fractions. Reproduced with permission from van
Albada, van Tiggelen, Lagendijk and Tip (1991) c© 1991, American Physical Society

with the theoretical descriptions in the inset (upper line Soukoulis and1

Datta (1994), lower line van Albada, van Tiggelen, Lagendijk and Tip2

(1991)). There is reasonable agreement with the appropriate theory for3

higher filling fractions. In addition, these measurements show that the4

reduction in transport speed can be well separated from signatures of5

localization. Some of the samples studied here do show a non-exponential6

tail in the time-resolved transmission intensity as discussed below.7

However, these samples do not necessarily show a decrease in transport8

speed. This is because the Mie-resonances responsible for the increase9

in scattering cross-section (Mie, 1908) as well as resonant scattering are10

complemented by resonances in the structure factor, which influences11

only the scattering cross-section. Thus a suitable particle size and packing12

fraction can lead to a separation of the effects of localization and resonance13

scattering (Störzer, Aegerter and Maret, 2006).14

In addition, resonant scattering was also observed in multiple15

scattering measurements on cold atoms (Labeyrie, Vaujour, Müller,16

Delande, Miniatura, Wilkowski and Kaiser, 2003), where a decrease in17

transport speed up to a factor of many orders of magnitude has been18

observed.19

3.2.4 Statistical Features2021

As was discussed in the context of microwave experiments, the statistics22

of transmitted or reflected photons can also give valuable information23

about the samples and their possible localization properties. Due to its24

wave nature, multiply scattered light shows a characteristic interference25
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FIGURE 27 The transport velocity as measured from a combination of time-of-flight
and backscattering measurements as obtained by Störzer, Aegerter and Maret (2006).
The main figure shows the velocity relative to its expectation using the Garnett
approach. This strongly overestimates the transport speed at particle sizes
corresponding to integers of half the wavelength inside the scatterer. The inset shows
the transport speed as a function of size parameter compared to theoretical
expectations such as that shown in Figure 26 (lower line), and to calculations based
on the model of Busch and Soukoulis (1996) that takes into account correlations
between scatterers and thus should be applicable for high filling fractions (upper
line). Reproduced with permission from Störzer, Aegerter and Maret (2006)
c© 2006, American Physical Society

pattern known as speckle. The intensity of each speckle spot will 1

be determined by the differing phase lags between photon paths. 2

For a diffusive sample, the phase delay at differents point will be 3

given by a Gaussian distribution, such that the corresponding intensity 4

distribution is given by an exponential. This intensity distribution of the 5

speckle pattern has been characterized by Wolf, Maret, Akkermans and 6

Maynard (1988), where good agreement with the exponential decay of 7

the probability has been found. Vellekoop, Lodahl and Lagendijk (2005) 8

have measured the phase delay directly using interferometric methods 9

(see Figure 28). This allows a study not only of the intensity distribution, 10

but also of the phase distribution. From the width of this distribution, 11

an independent measure of the diffusion coefficient can be found, which 12

Vellekoop, Lodahl and Lagendijk (2005) find in good agreement with 13

several other ways of determining D. 14

When photons are localized within a sample, the phase-delay 15

distribution changes accordingly. Due to the presence of closed loops, 16

there will be an increase in constructive interference of the different paths. 17

In turn this leads to an intensity distribution with a non-exponential 18
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FIGURE 28 Distribution of the phase delay in a random sample. Left: delay time;
right: delay time weighted by intensity. For classical samples, the width of these
distributions yields a measure of the diffusion coefficient of light. In Vellekoop, Lodahl
and Lagendijk (2005), this was done for TiO2 particles of several sizes and a typical
result is shown here. The determination of the diffusion coefficient in this way agrees
very well with that from time-of-flight measurements. Reproduced with permission
from Vellekoop, Lodahl and Lagendijk (2005) c© 2005, American Physical Society

tail at high intensities (as well as a suppression at small intensities due1

to conservation of energy). This has been calculated in one-dimensional2

and quasi-one-dimensional systems (Nieuwenhuizen and van Rossum,3

1995; Sebbah, Hu, Klosner and Genack, 2006). These calculations are in4

agreement with the results obtained from microwaves discussed above5

(Garcia and Genack, 1989), however, the situation in three-dimensional6

systems is less clear. There have, as yet, been no experimental findings7

of changed phase statistics close to Anderson localization. In addition,8

there are no explicit calculations for the phase distribution in a three-9

dimensional localizing sample.10

3.3 Time-resolved Measurements1112

As we have seen above, static measurements of transmission or reflection13

are not readily suited for observing effects of strong localization. This14

is due to the fact that a simple loss of the number of photons15

in transmission in thick samples cannot distinguish localization from16

absorption. Therefore, one has to determine the phase of the photons as17

well. This can be done either via a quantification of the fluctuations, as18

discussed above, or via the time-resolved measurements we will discuss19

below. Since localization acts differently on photons that have spent20

different amounts of time inside the sample, localization and absorption21

can be separated in this case, as can be seen by the different functional22

dependencies implied by the effects. Absorption invariably leads to an23

exponential decrease also of the time-resolved intensity, while localization24

and its corresponding renormalization of the diffusion coefficient lead to25

a decay that is slower than exponential.26
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3.3.1 The Diffusion Coefficient 12

In a typical time-resolved measurement, the path-length distribution of 3

photons inside a sample of finite thickness is obtained. This can be done 4

either in transmission or in reflection. Due to the much faster time scale of 5

the signal in reflection (most of the intensity is only delayed a time l∗/v), 6

an experiment in transmission is much more feasible, although there 7

have also been experiments in reflection (Johnson, Imhof, Bret, Rivas 8

and Lagendijk, 2003). In the diffusion approximation, the path-length 9

distributions can be calculated analytically (for a derivation see, for 10

instance, Lenke and Maret (2000)). In transmission, one obtains: 11

T (t) ∝
∑

n
(−1)n+1 exp

[
−

(
n2π2 D

L2 +
1
τabs

)
t

]
, (10) 12

where τabs is the absorption length. Thus, for a sample of given length 13

the time-resolved intensity is determined solely by D and τabs. These two 14

parameters have very little covariance, as the time delay, until sizeable 15

transmission through the sample is achieved, is solely determined by D, 16

while the long-time behaviour is given by an exponential decay with a 17

slope of π2 D/L2
+ 1/τabs. 18

In order to measure the time-resolved transmission, several types 19

of setups have been used. Usually, a pulsed-laser system capable of 20

producing picosecond pulses shines light on the sample. Behind the 21

sample, a photodetector starts a clock that is subsequently stopped by a 22

delayed reference pulse. For a more detailed description of such setups 23

see, for instance, Watson, Fleury and McCall (1987) and Störzer, Gross, 24

Aegerter and Maret (2006). For very thin samples, pulses on the scale 25

of a few fs are needed, so that interferometric methods are needed for 26

detection. This was done by Johnson, Imhof, Bret, Rivas and Lagendijk 27

(2003) using samples of etched GaP (this will be discussed in more detail 28

below in the context of time-resolved reflection measurements). Figure 29 29

shows the result of a measurement using a ps system (Störzer, Gross, 30

Aegerter and Maret, 2006), in the case of a sample of TiO2 particles of 31

average diameter 540 nm at a wavelength of 590 nm. This sample has a 32

value of kl∗ = 6.3(3) and thus shows purely diffusive behaviour as can 33

be seen from the fit to Equation (10) shown as a thick solid line, which 34

perfectly describes the data. 35

Due to the fact that time-resolved transmission thus allows a direct 36

determination of the diffusion coefficient, many early experiments have 37

looked for anomalously low values of D, or a thickness dependence of D 38

(see e.g. Watson, Fleury and McCall (1987) and Drake and Genack (1989)). 39

In these experiments, Drake and Genack (1989) found very low values 40

of D and interpreted them as indications of the onset of localization 41
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FIGURE 29 Time-resolved transmission for a classical sample with kl∗ = 6.3 (data
from Störzer, Gross, Aegerter and Maret (2006)). The thick solid line is a fit to classical
diffusion theory through a slab of length L, which allows determination of the
diffusion coefficient and the absorption length. There is little covariance between the
two quantities as D determines the time lag before any photons are transmitted
through the sample, while the absorption length only influences the slope of the
exponential long-time tail.

(see Figure 30). However, due to resonance scattering, as discussed above1

and pointed out by van Albada, van Tiggelen, Lagendijk and Tip (1991), a2

low value of D does not necessarily imply a low value of l∗ nor the onset of3

localization. This is because the reduction in transport velocity induced by4

the increased dwell time in resonance scattering will reduce the value of D5

obtained from time-of-flight measurements.6

Similar information can also be gathered from a time-resolved7

measurement in reflection geometry. This setup presents additional8

experimental difficulties due to the much shorter time scales of the9

reflection signal. In reflection, most photons exit the sample after very few10

scattering events, therefore the peak in the time-resolved intensity is of11

the order of l/v, where l is the scattering mean free path. For samples12

close to the localization transition, i.e. with a mean free path comparable13

to the wavelength, this time is of the order of a few fs and thus very14

difficult to measure. After this peak, it can again be calculated in the15

diffusion approximation (see Johnson, Imhof, Bret, Rivas and Lagendijk16

(2003)) where the intensity decreases as17

R(t) ∝
∑

n
n2 exp

[
−

(
n2π2 D

L2 +
1
τabs

)
t

]
. (11)18

For short times this corresponds to a power-law decay with an19

exponent of 3/2, whereas at long times (the time scale of transmission)20
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FIGURE 30 The diffusion coefficient and the absorption length of light through
powders of TiO2 as determined by time-of-flight measurements (Drake and Genack,
1989). The decrease of the diffusion coefficient with incident wavelength was
interpreted as the onset of the localization transition, which predicts vanishing of the
diffusion coefficient at a phase transition with kl∗, i.e. the wavelength. However, it has
later been shown van Albada, van Tiggelen, Lagendijk and Tip (1991) that such a
decrease is more likely to be due to an increased dwell time caused by resonant
scattering of particles having roughly the same size as the wavelength of light.
Reproduced with permission from Drake and Genack (1989) c© 1989, American
Physical Society

there is an exponential decay on the same time scale as in transmission 1

measurements. Due to the time scale of the resulting intensity, 2

measurements of time-resolved reflection need to be done with a fs-pulsed 3

laser and the signal needs to be recorded interferometrically. In addition, 4

the fact that most signals will be from photons which have only gone 5

through a few scattering events, the signal-to-noise ratio will limit the 6

time resolution to which reflection measurements can be performed. In 7

spite of these differences, Johnson, Imhof, Bret, Rivas and Lagendijk (2003) 8

have carried out measurements of time-resolved reflection on porous GaP 9

samples with very small values of kl∗. Figure 31 clearly shows the initial 10

power-law decay and the subsequent exponential decrease due to the 11

finite sample and possible absorption. 12

Measurements of the diffusion coefficient from such time-resolved 13

measurements, both in transmission and reflection, do show good 14
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FIGURE 31 Time-resolved measurements of reflection (data from Johnson, Imhof,
Bret, Rivas and Lagendijk (2003)). The left-hand panel presents the data on a
logarithmic scale showing the exponential decrease at long times due to finite
thickness and absorption. On the right the same data are shown on a
double-logarithmic scale after deconvolution with the pulse shape. This demonstrates
that at shorter times, the data can be described by a power-law decay with an
exponent of 3/2 (straight line) in agreement with diffusion theory. Reproduced with
permission from Johnson, Imhof, Bret, Rivas and Lagendijk (2003) c© 2003, American
Physical Society

agreement with determinations from the phase fluctuations as found by1

Vellekoop, Lodahl and Lagendijk (2005).2

3.3.2 Spatially Dependent Diffusion Coefficient34

Since time-resolved measurements of transmission or reflection are5

capable of determining the diffusion coefficient very accurately, it6

is also possible to employ such measurements in the search for a7

scale dependence of the diffusion coefficient. One of the hallmarks of8

localization, as discussed above, is that the diffusion coefficient becomes9

renormalized (Abrahams, Anderson, Licciardello and Ramakrishnan,10

1979). This renormalization with the scale of the sample can be11

translated into a path-length dependence of the diffusion coefficient,12

as was first calculated by Berkovits and Kaveh (1987), at the critical13

point. Subsequently, they inserted this path-length dependence into the14

diffusion theory of time-resolved transmission (Berkovits and Kaveh,15

1990). This changes the classical expectation (Equation (10)) to16

T (t) ∝
∑

n
(−1)n+1

(
D(t)

D0

)2

exp

[
−

(
n2π2 D(t)

L2 +
1
τabs

)
t

]
. (12)17

Similarly, a path-length dependence of the diffusion coefficient was used18

to calculate the influence of localization on the cone shape discussed19
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above (van Tiggelen, Lagendijk and Wiersma, 1995). Later investigations 1

by some of these authors (Skipetrov and van Tiggelen, 2004, 2006) on 2

self-consistent theory in open systems have explicitly calculated the effect 3

of localization on time-resolved measurements. In reflection geometry, 4

they find a change of the exponent of the power-law decay from 3/2 5

to 2 as the localization transition is crossed (Skipetrov and van Tiggelen, 6

2004). This will be extremely difficult to observe experimentally however. 7

As discussed above, reflection measurements have to be done on short 8

time scales and are limited by the signal-to-noise ratio due to high 9

intensities at very short times. In addition, absorption and a finite sample 10

will also lead to a decrease in intensity from the t−3/2 power law, which 11

will be exceedingly difficult to distinguish from the t−2 predicted by 12

localization theory. In transmission, Skipetrov and van Tiggelen (2004) 13

find a similar result as Berkovits and Kaveh (1990) in that the path- 14

length dependence of the diffusion coefficient leads to a non-exponential 15

tail in time-resolved transmission with a decreasing slope. In addition to 16

Berkovits and Kaveh (1990) and Skipetrov and van Tiggelen (2004) also 17

explicitly studied the effect of the dimensionality. Consistent with the 18

scaling theory of Abrahams, Anderson, Licciardello and Ramakrishnan 19

(1979), they find that in the quasi-one-dimensional case, effects of 20

localization can already be observed above the transition (Skipetrov and 21

van Tiggelen, 2004). With this it is possible, for instance, to describe 22

the results on micro-wave transmission (Chabanov, Zhang and Genack, 23

2003) discussed above. In three-dimensional systems however, no signs 24

of localization are observed above the transition at all (Skipetrov and van 25

Tiggelen, 2006). 26

In Figure 32, we show time-resolved transmission measurements on 27

a TiO2 sample with a value of kl∗ ≈ 2.5(Störzer, Gross, Aegerter and 28

Maret, 2006), the particles having a diameter of 250 nm. As can be 29

seen, the transmission in this sample cannot be described by classical 30

diffusion (Equation (10), shown by the dashed line) alone. There is a non- 31

exponential decay with a decreasing slope as predicted by localization 32

theory. This can be quantified in the same way as was done by Chabanov, 33

Zhang and Genack (2003) as well as Skipetrov and van Tiggelen (2004), by 34

taking the negative derivative of the log of the transmission data. This is 35

shown in Figure 33 for several samples with varying values of kl∗. As can 36

be seen, with decreasing kl∗ there are increasing deviations from classical 37

diffusion theory (solid line). This is, however, only a qualitative measure 38

of possible signs of localization, and a more quantitative description is 39

still needed. Unfortunately, the predictions of Skipetrov and van Tiggelen 40

(2006) cannot be directly compared to the data, as the samples are much 41

thicker than can be described theoretically. However, using the analytic 42

description of Berkovits and Kaveh (1990) (Equation (12)), it is possible 43

to obtain a path-length dependence of the diffusion coefficient from the 44
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FIGURE 32 Time-resolved transmission of a localizing sample with kl∗ = 2.5 (data
from Störzer, Gross, Aegerter and Maret (2006)). As can be seen, the transmitted
intensity at long times shows a non-exponential tail indicative of a renormalized
diffusion coefficient (see Figure 33). In fact, the solid line is a fit to diffusion theory
including a scale-dependent diffusion coefficient as done in Aegerter, Störzer and
Maret (2006). For comparison, a fit to classical diffusion including absorption is
shown by the dashed line
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FIGURE 33 The long-time behaviour of time-of-flight measurements allows a direct
determination of the spatial dependence of the diffusion coefficient. Taking the
negative time-derivative of the logarithm of the transmitted intensity one obtains an
effective diffusion coefficient, which should be constant at long times. This is shown
here for three different samples, where the sample with kl∗ = 6.3 agrees perfectly
with diffusion theory and a constant diffusion coefficient. The sample with kl∗ = 2.5
however shows a decrease of the diffusion coefficient at long times

data by way of a fit with D(t). This is shown by the solid line in Figure 32,1

which describes the data reasonably well. The time dependence of D(t)2
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obtained from this fit is consistent with earlier simulation results by 1

Lenke, Tweer and Maret (2002), where a self-attracting random walk 2

was simulated and effective diffusion coefficients were determined. The 3

result of these simulations in three dimensions shows that the diffusion 4

coefficient is constant for some time, after which it decreases as 1/t . 5

This behaviour, the same as used to obtain the fit in Figure 32, can be 6

physically explained from the fact that up to the localization length, 7

roughly given by the size of the closed loops, the diffusion must be 8

classical, as interference effects appear only after a closed loop has 9

been traversed. At later times, the photons are localized to a specific 10

region in space, such that 〈r2
〉 tends towards a constant. Describing this 11

behaviour with an effective D(t) immediately leads to a dependence 12

of D(t) ∝ 1/t . This allows a quantitative discussion, not only of the 13

time-resolved transmission experiments and the determination of the 14

localization length discussed below, but also of the static transmission 15

measurements discussed above. 16

The fact that Johnson, Imhof, Bret, Rivas and Lagendijk (2003) did 17

not find a non-exponential decay in their time-resolved measurements 18

while their samples had similar values of kl∗ is probably due to the small 19

thicknesses used in that study. As can be seen from Figure 32, in the TiO2 20

samples the localization effects only start to appear after a few ns. This 21

corresponds to roughly a million scattering events. Comparing this to the 22

transmission data of Johnson, Imhof, Bret, Rivas and Lagendijk (2003), this 23

is almost an order of magnitude bigger than their maximum time of flight 24

(their maximum sample thickness is 20 µm). More quantitatively, this is 25

connected to the size of the localization length discussed below. 26

3.3.3 The Localization Length 2728

Given the phenomenological description of the diffusion coefficient based 29

on the simulations of the self-attracting random walk discussed above 30

(Lenke, Tweer and Maret, 2002), the deviations from the diffusion picture 31

in time-resolved measurements can be quantified. In the localized state, 32

the effective diffusion coefficient will decrease ∝ 1/t , which corresponds 33

to the limited extent of the photon cloud. On the other hand, above 34

the transition the diffusion coefficient should be constant. This implies 35

that a systematic study of the deviations from classical diffusion with 36

decreasing kl∗ should show a transition between these two asymptotic 37

behaviours. In this case, the localization length would simply be given 38

by
√

D0τloc, which however can only be determined as long as this 39

length scale is smaller than the sample thickness. 40

Considering the predictions of one-parameter scaling theory however, 41

the situation is somewhat more complicated. The fact that D is 42

renormalized to be dependent on the sample thickness as 1/L , has been 43

translated to a path-length dependence by Berkovits and Kaveh (1990) 44
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FIGURE 34 The scale dependence of the diffusion coefficient can be quantified by
the exponent, a, with which D decreases as a function of time. Its value is plotted here
as a function of kl∗ (data from Aegerter, Störzer and Maret (2006)). As can be seen,
above the transition to localization, the diffusion coefficient is constant as indicated
by an exponent a = 0, whereas below kl∗ ≈ 4 it increases to a = 1, which corresponds
to a localized state

to imply a path-length dependence as D(t) ∝ t−1/3. To take this into1

account, the time-of-flight measurements have been fitted with a power-2

law dependence of D(t) ∝ t−a at long times (Aegerter, Störzer and3

Maret, 2006). In the approach to localization, this exponent increases4

from its classical value of zero to its localized value of unity. At the5

transition, even the exponent of 1/3 can be observed, showing the critical6

point renormalization of the diffusion coefficient, see Figure 34. This plot7

also shows that the exponent is given by unity at low values of kl∗,8

corresponding to a localized state, while it is zero above the transition.9

This transition can be determined, from the dependence of the localization10

exponent in the figure, to be kl∗c ≈ 4.11

The algebraic decay of the diffusion coefficient in the critical regime12

does somewhat complicate the determination of the localization length.13

Due to the fact that a classical behaviour can be obtained also from a14

change in the exponent, the localization length now has to be determined15

via L1−a√D0τloc
a . In the limiting cases of a = 1, a = 0 this gives the same16

values as above, while giving an interpolation in the critical regime. The17

inverse of the localization length is the order parameter in the transition18

to localization. Therefore a systematic study of the localization length as19

a function of kl∗ gives a description of the transition including the critical20

point and the critical exponent.21

In Figure 35, this dependence is plotted with the localization length22

normalized to the sample thickness. For a finite sample, localization can23

only be observed if the localization length is smaller than the sample24
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FIGURE 35 The dependence of the inverse localization length on the critical
parameter kl∗ (adapted from Aegerter, Störzer and Maret (2006)). Below a critical
value of kl∗c ≈ 4, the localization length, as given by

√
D0τl, becomes smaller than the

sample thickness, indicating the transition to a macroscopic population of localized
states

thickness. Therefore, very thin samples having values of kl∗ below the 1

transition will not show effects of localization, and only very thick 2

samples (with L far exceeding 100 l∗) can show the underlying transition. 3

This is probably why the time-of-flight measurements of Johnson, Imhof, 4

Bret, Rivas and Lagendijk (2003) are well described by classical diffusion 5

in spite of the fact that their values of kl∗ are close to or beyond the 6

transition. Their samples, which consist of photoanodically etched GaP 7

as already discussed above in the context of cone-tip measurements, are 8

rather thin (L ≈ 40l∗). This implies that the paths of the light traversed 9

inside the sample are not sufficiently long to form enough closed loops 10

and thus show localization. 11

3.3.4 Determination of the Critical Exponent 1213

The systematic determination of the localization length for different 14

samples around the localization transition also allows an experimental 15

investigation of the critical exponent (Aegerter, Störzer and Maret, 16

2006). In this context, scaling theory (Abrahams, Anderson, Licciardello 17

and Ramakrishnan, 1979) predicts a critical exponent ν < 1, without 18

specifying a precise value. As discussed above, an epsilon expansion in 19

the dimension starting from the lower critical dimension (dl = 2) yields 20

a value of 1/2 for the critical exponent (John, 1984), however due to the 21

fact that the system considered here is fully three-dimensional, such a 22

comparison cannot be considered precise. On the other hand, the fact, that 23

above the upper critical dimension (du = 4) the mean-field value ν = 1/2 24

is always obtained for the exponent of the order parameter in a second- 25
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FIGURE 36 The inverse localization length as a function of the critical parameter
|kl∗ − kl∗c |. As can be seen, the localization length diverges in the approach to a critical
point at kl∗c = 4.4(2) with an exponent ν consistent with a value of 0.65(15) (solid line).
This is in accordance with a mean-field argument for the value of the critical exponent
but in contradiction to numerical simulations (MacKinnon and Kramer, 1981)

order phase transition (Schuster, 1978), would indicate that the value for1

a three-dimensional system should not be too far from these two limiting2

cases. In contrast, numerical evaluations of the Green–Kubo formalism3

consistently obtain a value of ν = 1.5(MacKinnon and Kramer, 1981;4

Lambrianides and Shore, 1994; Rieth and Schreiber, 1997), which is not5

only inconsistent with the experimental data shown below, but also with6

one-parameter scaling theory (Abrahams, Anderson, Licciardello and7

Ramakrishnan, 1979). It should be noted however that these numerical8

investigations are carried out on quasi-periodic lattices. As such they thus9

do not necessarily conform to the nature of Anderson localization, which10

is fundamentally based on a completely disordered structure. This may11

explain the discrepancy with the analytic as well as the experimental12

results.13

When plotting the inverse localization length against the critical14

parameter |kl∗ − kl∗c |/kl∗, Aegerter, Störzer and Maret (2006) obtained a15

divergence as shown in Figure 36, with a critical exponent of ν = 0.45(10).16

The above expression for the critical parameter was defined by Berkovits17

and Kaveh (1990), while John (1984) and others used the expression18

|kl∗ − kl∗c |. Using this latter critical parameter, the data yield a different19

exponent, namely ν = 0.65(15). The critical value of kl∗ is not affected20

by the choice of critical parameter. Such an experimental determination21

can be used to test the different kinds of theoretical predictions discussed22

above. One notes that the result is consistent with the rather unspecific23

prediction of one-parameter scaling theory. Furthermore, it is in striking24

agreement with the result of the epsilon expansion, as well as the mean-25
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field prediction. This is somewhat surprising given that the experiments 1

are carried out in a system of intermediate dimensionality, where both 2

the epsilon expansion and the mean-field result should not explicitly 3

hold. The numerical results finally are strongly inconsistent with the data, 4

which might be due to the fact that the numerical results are obtained from 5

quasi-periodic systems. 6

4. CONCLUSIONS AND OUTLOOK 78

Watching the light scattered back from an object can not only give a wealth 9

of information on the scattering object, but also on some properties of light 10

itself. As long as the scatterers are sufficiently random – and the samples 11

thus opaque – the photonic analogue of the metal–insulator transition 12

can be observed. Due to the fact that in this case there is no interaction 13

between the diffusing particles (the photons, in contrast to the electrons in 14

a metal), a theoretical treatment of photon localization is closer than that 15

of electrons. 16

As we have seen however, great care has to be taken in the experimental 17

investigation of photon localization. Absorption, resonant scattering 18

or other external effects may well pose as localization in that they 19

also produce an exponential decrease in transmission or a slowing 20

down of transport, respectively. Therefore, investigations of localization 21

have to concentrate on measures that are unaffected by absorption 22

or transport speed, such as the speckle intensity distribution or time- 23

resolved measurements. On the other hand, static measures are still 24

useful, however one then needs an independent quantification of the 25

absorption and the transport speed. 26

Using time-resolved measurements, Störzer, Gross, Aegerter and Maret 27

(2006) have found clear indications of non-classical diffusion, which show 28

all the hallmarks of localization and cannot be explained by the above 29

artefacts. In fact, a quantitative description by Aegerter, Störzer and 30

Maret (2006) of these data with qualitative localization theory not only 31

finds localized states as given by a constant 〈r2
〉, but can also describe 32

the thickness dependence of the static transmission over twelve orders 33

of magnitude without a single adjustable parameter. However, these 34

measurements cannot provide evidence for the interference nature of 35

the effect. For this purpose, measurements affecting the phase of the 36

propagating photons would be necessary. In this context, it is useful to 37

remember the work of Erbacher, Lenke and Maret (1993) and Golubentsev 38

(1984), showing that weak localization can be destroyed by applying a 39

strong magnetic field to a Faraday-active multiple-scattering medium. 40

Using the same approach, it might be possible to add a Faraday-active 41

material to a sample showing localization and apply a strong magnetic 42

field. A destruction of the non-exponential tail in this case would clearly 43



56 Christof M. Aegerter and Georg Maret

show the interference nature of the effect and thus Anderson localization.1

Work to this effect is under way.2
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