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Abstract
We use super-paramagnetic spherical particles which are arranged in a two-dimensional
monolayer at a water/air interface to investigate the crystal to liquid phase transition.
According to the KTHNY theory a crystal melts in thermal equilibrium by two continuous
phase transitions into the isotropic liquid state with an intermediate phase, commonly known
as the hexatic phase. We verify the significance of several criteria based on dynamical and
structural properties to identify the crystal–hexatic and hexatic–isotropic liquid phase
transitions for the same experimental data of the given setup. The criteria are the bond
orientational correlation function, the Larson–Grier criterion, the 2D dynamic Lindemann
parameter, the bond orientational susceptibility, the 2D Hansen–Verlet rule, the
Löwen–Palberg–Simon criterion as well as a criterion based on the shape factor of Voronoi
cells and Minkowski functionals. For our system with long-range repulsion, the bond order
correlation function and bond order susceptibility work best to identify the hexatic–isotropic
liquid transition and the 2D dynamic Lindemann parameter identifies unambiguously the
hexatic–crystalline transition.

(Some figures may appear in colour only in the online journal)

1. Introduction

While the liquid to crystal transition in three-dimensional
systems is usually a first order transition, the situation in
two-dimensional systems is found to be more complex.
While grain-boundary induced melting [1, 2] or condensation
of geometrical defects [3, 4] suggest a first order phase
transition, the theory of Kosterlitz, Thouless, Halperin,
Nelson and Young [5–8] predicted a melting process via
two continuous phase transitions with an intermediate
phase. The intermediate phase appears due to the fact that
the translational and orientational symmetries are broken
at different temperatures. The first phase transition at
temperature Tm is associated with destroying the discrete
translational symmetry. The intermediate phase is named
hexatic based on the remaining sixfold quasi-long-range
orientational order. If the orientational symmetry is destroyed
to a short-range one at temperature Ti > Tm a second phase
transition from the hexatic to the isotropic liquid occurs.
According to the KTHNY theory the different symmetries are

affiliated with the occurrence of different topological defects,
namely dislocations and disclinations.

The first simulations of small systems of hard disks
showed a single first order transition [9]. For increasing
system size a first order transition with a short correlation
length was ruled out but the data were compatible with a
weak first order transition as well as a continuous scenario.
Since a phase coexistence was reported in an equilibrated
ensemble we would like to argue in favor of a weak first
order scenario. Simulating larger systems with up to 4 million
particles with the same computer code it was shown that a
van der Waals loop, which is usually interpreted as a first
order criterion, weakens with increasing system size [10]. But
especially in small systems the existence of a van der Waals
loop cannot be taken as the sole criterion since the size of
the loop strongly depends on the boundary conditions and
even systems which are known to have continuous transitions
show a van der Waals loop [11]. Simulations of dipolar
particles were consistent with KTHNY theory [12]. Whether
a system melts via a first order or via KTHNY theory may
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depend on the core energy of dislocation [13], a quantity
which one can calculate a priori only in the dilute limit of
dislocations where renormalization effects do not appear [14].
Binder et al pointed out that the KTHNY scenario may easily
be preempted by a first order transition [15]. Recent large
scale simulations of hard core particles reported a continuous
transition between the crystal and the hexatic phase, but since
a phase coexistence of hexatic and isotropic liquid was found,
this transition was reported to be first order [16].

In experimental systems, the existence of the intermediate
hexatic phase is well established [17–24], but the nature
of the transition is debated as well. Indications of first
order transitions are reported in a colloidal system with
screened Coulomb interactions [17] and di-block copolymer
systems [21, 22]. Like in simulations, a phase coexistence is
usually interpreted as a first order signature. KTHNY theory
is a melting theory starting from large single crystals, but
of course a thermodynamic phase should be independent of
the history of the matter and cooling and heating cycles
should give the same results. Wang et al reported finding
poly-crystalline domains during cooling in a system of
diameter-tunable microgel spheres at finite cooling rates [25].
Indeed, the cooling rates have to be small such that critical
fluctuations of the continuous order phase transition can
switch the symmetry globally. In the present system of
particles with dipolar interaction we found (within the given
resolution of temperature) both transitions to be continuous
during melting and freezing. If the cooling rate is very slow
(keeping the system always in quasi-thermal equilibrium)
we do observe large single crystal domains in the field
of view [23] implying that KTHNY theory also holds
for freezing. However, when cooling the system rapidly
from the isotropic liquid to the crystalline state we find a
poly-crystalline sample without a signature of a hexatic phase
during crystallization [26]. But even if growing crystalline
domains are found in a liquid environment shortly after
a temperature quench one should not interpret them as
liquid–crystal coexistence—simply because the system is far
out of equilibrium. In the same sense one should be careful
of taking poly-crystallinity solely as a signature of first order
transition if the system is cooled at a finite rate.

This paper is organized as follows. After a short
introduction about the long-range order of crystals in two
dimensions, the melting theory developed by Kosterlitz,
Thouless, Halperin, Nelson, and Young is summarized in
section 2. In section 3 we introduce our experimental setup
and how we realize a colloidal monolayer. The following
sections 4–11 introduce several quantities to identify different
thermodynamic phases in 2D and discuss the results for our
colloidal system with dipolar particle interaction. Finally we
summarize the advantages and disadvantages of the measures
in section 12.

2. Crystals in two dimension and KTHNY

Since the work of Peierls [27, 28] and Mermin [29, 30] it is
known that strictly speaking no crystals exist in systems with
dimension D < 3. In general, the significance of fluctuations

is increased if the dimension of a system is decreased.
Crystal lattices with dimension D < 3 are thermally unstable
due to long-wavelength phonon modes. As a consequence
long-range translational order does not exist. In the case of
D = 2 Mermin showed that the displacement autocorrelation
function

〈[u(r)− u(r′)]2〉 ∼ ln |r− r′| |r− r′| → ∞ (1)

diverges logarithmically in the crystalline phase. The slow
logarithmic divergence in 2D leads to crystals which possess
only a quasi-long-range translational order. On the other hand
the local crystalline orientation is preserved and a long-range
bond orientational order exists. The absence of long-range
translational order also affects the shape of the structure factor
S(q). In 3D the structure factor is characterized by a number
of delta functions

S(q) ∼ δ(q−G) (2)

at the reciprocal lattice vectors G reflecting a non-diverging
displacement u(r). In 2D the delta functions are replaced by a
set of power-law singularities

S(q) ∼ |q−G|−2+ηG(T) (3)

where

ηG(T) =
kBT|G|2(3µR + λR)

4πµR(2µR + λR)
(4)

depends on the Lamé coefficients µR and λR.
As mentioned before, a 2D crystal is characterized by

a long-range orientational and a quasi-long-range translation
order. The KTHNY theory describes the melting of a
hexagonal crystal by the appearance of thermally induced
topological defects. The crystal–hexatic phase transition
takes place at temperature Tm when thermally generated
bounded pairs of dislocations which spontaneously appear
in the crystal phase dissociate into single dislocations.
While dislocations destroy the quasi-long-range translational
order a quasi-long-range orientational order is preserved.
The second phase transition, hexatic–isotropic liquid, at
Ti > Tm occurs when dislocations are separated into free
disclinations. Disclinations destroy the remaining quasi-long-
range orientational order so that in the isotropic liquid both
the translational and orientational orders are short range.

By identifying the kind of translational and orientational
order at a given temperature T the state of the system can be
defined and thus the phase transition points. The nature of the
order is marked by a different behavior of the density–density
correlation function gG and bond orientational correlation
function g6. The density–density correlation function is given
by

gG(r = |rk − rl|) = 〈ρ
∗(rk)ρ(rl)〉 (5)

where ρ(rk) = eiGrk is the translational order parameter of
particle k located at position rk. Practically the translational
correlation function is rarely used to identify the melting
temperature Tm. This is due to the fact that in a system with
Mermin–Wagner fluctuations being present, the reciprocal
lattice vector G is not easily determined due to the power-law
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singularities of the structure factor. Especially in large systems
it is numerically difficult to extract G unambiguously.

The bond orientational correlation function is defined by

g6(r = |rk − rl|) = 〈ψ
∗

6 (rk)ψ6(rl)〉 (6)

with the sixfold bond orientational order parameter

ψ6(rk) =
1
nl

nl∑
i=1

ei6θkl (7)

where nl is the number of nearest neighbors of particle k
and θkl is the angle between the bond of particles k and
l and an arbitrary but fixed reference axis. Here the 〈 〉
brackets correspond to an ensemble average. The long-range
orientational order in a crystal is expressed in a long-range
bond orientational correlation function limr→∞g6(r) 6= 0
whereas an algebraic decay of the density–density correlation
function gG(r) ∼ r−ηG(T) reflects the quasi-long-range
translational order. The hexatic phase is characterized by
an algebraic decay of g6(r) ∼ r−η6(T) (quasi-long-range
orientational order) with an exponent

η6(T) =
18kBT

πFA
(8)

depending on Frank’s constant FA. The short-range trans-
lational order on the other hand leads to an exponential
decay of gG(r) ∼ e−r/ξG(T) with ξG(T) being the translational
correlation length. In the liquid regime of the phase diagram
the orientational order is short range too, and the correlation
function decays as g6(r) ∼ e−r/ξ6(T) where ξ6(T) is the
orientational correlation length.

In addition to the predictions of the KTHNY theory
different criteria have been proposed to identify the phase
transitions. Whereas Wang et al [25] tested various 2D freez-
ing criteria in poly-crystalline samples of microgel particles
we do so in mono-crystalline samples of dipolar particles. We
verify the adaptability of the bond order correlation function,
the Larson–Grier criterion, the Lindemann parameter, the
bond orientational susceptibility, the 2D Hansen–Verlet rule,
the 2D Löwen–Palberg–Simon criterion, the shape factors and
the Minkowski functionals on the melting transitions.

3. Experimental system

The experimental system is described in detail in [31]. It
consists of a 2D colloidal monolayer of spherical polystyrene
spheres with diameter d = 4.5 µm suspended in water and
sterically stabilized with the surfactant sodium dodecylsulfate.
Nanoparticles of Fe2O3 are embedded homogeneously in
the polystyrene spheres and are responsible for the super-
paramagnetic behavior and a relatively large mass density
of 1.5 g cm−3. Therefore the particles are confined by
gravity at a water/air interface formed by a droplet which
is suspended by surface tension in a top sealed cylindrical
hole (6 mm diameter) of a glass plate. An external magnetic
field H perpendicular to the water/air interface induces
a magnetic moment M = χH in each particle causing a
repulsive dipole–dipole pair interaction Emagn between them.

The dimensionless interaction parameter 0 which is given by
the ratio of the magnetic versus thermal energy

0 =
Emagn

kBT
=
µ0

4π
(χH)2(πρ)3/2

kBT
∝ T−1

sys (9)

is equivalent to an inverse system temperature. Under the
conditions of temporally constant ambient temperature T and
2D particle density ρ the system temperature depends only
on the magnetic field. As a result the system temperature
can be easily adjusted by simply changing the strength of the
magnetic field H.

An inhomogeneous distribution of the particles within the
sample would induce a gradient in the system temperature
causing a spatial dependence of the phase transition.
Therefore it is crucial to align the water/air interface
absolutely planar and horizontally. For this purpose several
computer controlled regulation loops have been installed
to adjust the interface and keep it temporally constant. A
monochrome CCD camera is used to observe the particles
by video microscopy. The field of view (1158 × 865 µm2)
contains ≈9000 particles whereas the whole system includes
≈250 000 particles. During data acquisition the coordinates of
the particles in the field of view are determined in situ every
≈2 s over a period of 25 min by digital image processing
with an accuracy of about 50 nm. In this way the phase
space information is accessible on all relevant length and time
scales. A crystal is melted by stepwise increasing the system
temperature via a reduction of the magnetic field. In the
range of the phase transitions the interaction parameter was
changed in small steps with an increment of10 ≈ 0.25. After
each modification of the interaction parameter the system was
equilibrated for about a day. Figure 1 shows images of the
colloidal monolayer in the crystalline (left) and isotropic fluid
(right) phases.

4. Orientational correlation function

As a key quantity of KTHNY theory, figure 2 shows the
bond orientational correlation function for temperatures in
the crystalline, hexatic and isotropic liquid regimes. The
evaluation of g6(r) includes a time average over several
particle configurations in addition to the ensemble average.
The bond correlation function stays finite for interaction
parameters 0 > 0M = 60 in the crystalline phase. An
algebraic decay is observed for 0 = 59.6 and 59.3 so that
the crystalline–hexatic phase transition takes place between
0 = 60 and 59.6. In the liquid state (0 = 47.6 and 39.5) the
decay of g6(r) is exponential. This behavior is in accordance
with the predictions of the KTHNY theory and reconfirms
previous experimental results [19, 20, 23] for the given
system. The hexatic–isotropic transition can be determined by
investigation of the goodness-of-fit statistics of algebraic or
exponential decay [23]. In principle one could also determine
the hexatic–crystalline transition by investigating the slope of
g6(r) in a log–log plot but it is numerically not very precise to
distinguish between a small but finite and a zero slope decay.
From g6(r) one can also extract two diverging quantities:
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Figure 1. Image section of the CCD camera of a monolayer of colloidal particles. For high magnetic fields the particles arrange in a crystal
(left) and for low magnetic field particles form a fluid (right). The images are a quarter in size of the full field of view (about
580× 430 µm2). The hexatic phase is hardly distinguishable from the isotropic phase solely by eye and is not shown here.

Figure 2. Orientational correlation functions g6(r) (in units of
particle distances a) for different interaction parameters 0. For
0 ≥ 60, g6(r) reflects the long-range order of a crystal (upper three
curves) while in the hexatic phase an algebraic decay is observed
(the two curves in the middle). An exponential decay is observed in
the isotropic liquid (lower three curves).

the orientational correlation length diverges at 0i and Frank’s
constant diverges at 0m. In [23] we fitted both divergencies to
extract critical exponents but the transition temperatures were
not taken as fitting parameters but used as an input. Otherwise
fitting the transition temperatures to a single sided divergence
in a finite field of view always overestimates the transition
points by a few per cent.

5. Local bond order by Larson–Grier

To get insight into the local symmetry we focus on the
magnitude of the local bond order parameter

m6k = |ψ6(rk)|. (10)

m6k is zero for perfect five- or sevenfold neighbored particles
and one for perfect sixfold ones. It measures how the
neighbors of particle k fit locally on a hexagonal lattice.
To compare the local sixfold symmetry with neighboring

particles Larsen and Grier [32] investigated the magnitude of
the projection of ψ6k

n6k =

∣∣∣∣∣ψ∗6k
∗ 1/Nl

∑
l

ψ6l

∣∣∣∣∣ (11)

to the mean local orientation field. It takes the second nearest
neighbors into account and determines how the orientation
of particle k fits into the orientation of its neighbor particles.
Since it is a projection n6k ≤ m6k and n6k + m6k ≤ 2. In [32]
a unimodal distribution was found even if real space images
showed a dilute liquid (or gas) phase and dense crystalline
flakes implying an attractive interaction between particles to
exist, whereas in [17] a bimodal distribution was reported next
to the isotropic–hexatic as well as to the hexatic–crystalline
transition. Particles in the m6–n6-plane with m6 + n6 > 1
(upper right corner) were identified to be crystal-like particles.
Figure 3 shows the probability distribution for our purely
repulsive system in the m6–n6-plane for several temperatures.
The upper row shows plots in the crystalline phase, the second
row shows plots of the hexatic phase and the two lowest
rows are both from fluid phases. The absence of a bimodal
distribution and the weak dependence of the local bond
order field above and below 0i and 0m indicate continuous
phase transitions. The third row shows that the local order
in a 2D fluid is predominantly hexagonal, even far away
from the phase transitions. Only at very high temperatures
(low interaction strength) do most of the particles have
m6 + n6 < 1, indicating that the local sixfold order up to
the second shell is lost (lowest line). Since the dependence
of the local bond order on the different phases is weak,
it does not serve as a sharp criterion for phase transition
temperatures.

6. Lindemann parameter

The Lindemann parameter is a well-known criterion in 3D to
identify the melting point of crystalline structures. According
to Lindemann [33] the melting of a crystal takes place
if the thermal energy leads to displacements of atoms in
relation to their equilibrium lattice sites which are in the
range of one-half of the interatomic distance. The Lindemann
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Figure 3. Probability distribution of the magnitude of the local bond order parameter m6 versus the magnitude of the projection of ψ6 to the
mean of nearest neighbors n6. The probability distribution changes continuously at both phase transitions and no bimodal distribution can
be found.

criterion was modified by Gilvarry [34] by considering
the root-mean-square amplitude of thermal vibrations. He
suggested that the melting process is initiated when the
ratio of the root-mean-square amplitude and the interatomic
distance reaches a critical value of approximately 0.1.

The Lindemann criterion in this form is inapplicable
in 2D. Due to the long-wavelength phonon modes the
Lindemann parameter diverges in a crystal as well as in a

liquid. Bedanov et al [35] introduced a melting criterion for
2D

γm =
〈|uj − uj+1|

2
〉

a2 (12)

analogous to the Lindemann parameter in 3D based on the
displacement uj of particle j with respect to its nearest
neighbors j + 1 and normalized to the average inter-particle
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Figure 4. The dynamic Lindemann parameter stays finite in the
crystal phase and diverges in the hexatic and isotropic liquid states.
0 increases from top to bottom with the same order as in the legend.

distance a. Zahn et al [19] generalized equation (12) to a
dynamic Lindemann parameter

γL(t) =
〈[1ui(t)−1ui+1(t)]2〉

2a2 (13)

where 1u(t) = u(t) − u(t = 0). The crystal–hexatic phase
transition can be determined by the long-time behavior of
γL(t). The Lindemann parameter γL(t → ∞) diverges in
the hexatic and isotropic liquid phases whereas in a crystal
γL(t→∞) stays finite below a critical value γ c

L = 0.033.
The Lindemann parameter γL(t) is shown in figure 4

for different interaction parameters 0. As expected, γL(t)
converges in a crystal (0 ≥ 60) to a finite value < γ c

L
but diverges in the hexatic phase (0 = 59.6 and 57.7)
and isotropic liquid state (0 = 53.7, 49.6 and 39.5).
According to the behavior of the Lindemann parameter the
crystal–hexatic transition occurs in the range between 0 =
60.0 and 59.6. This result is in excellent agreement with the
predictions of the KTHNY theory and the determination of the
crystal–hexatic phase transition obtained with the help of the
bond orientational correlation function g6. If grain boundaries
are visible due to finite cooling rates or density gradients in
the sample, the dynamic Lindemann parameter is not finite for
the crystalline state. However, for a mono-crystalline sample
it acts as a very sensitive tool to determine the crystal–hexatic
phase transition temperature 0m.

7. Bond orientational susceptibility

The hexatic–isotropic liquid phase transition is associated
with fluctuations of the orientational order parameter ψ6.
The fluctuations can be quantified by the bond orientational
susceptibility

χ6 = A(〈|92
6 |〉 − 〈|96|〉

2) (14)

where96 = 1/N
∑N

k=1ψ6(rk) is the global bond orientational
order parameter of the N particles included in a system
with size A. The bond orientational susceptibility increases

Figure 5. The bond orientational susceptibility for interaction
parameters in the isotropic liquid, hexatic and solid states. The
maximum of the peak corresponds to the isotropic liquid phase
transition.

dramatically if the temperature reaches the point of the
hexatic–isotropic liquid phase transition at 0i [36]. Here
an increase of χ6 is observed independently of whether
the system approaches the transition point from the liquid
phase 0 → 0−i or from the hexatic phase 0 → 0+i . This
behavior of the bond orientational susceptibility simplifies the
identification of the hexatic–isotropic liquid phase transition
in comparison with the previously mentioned method of the
single sided divergence of the orientational correlation length
0 → 0−i . In figure 5 we see a sharp increase of χ6 at
0 = 57.5 ± 0.5. This result coincides with the value for
the hexatic–isotropic transition obtained in [23]. The bond
orientational susceptibility is a very sensitive tool to determine
the transition temperature since we find a sharp increase from
both sides of the peak (unlike e.g. the divergence of the
orientational correlation length calculated from g6(r) where
the divergence is single sided, see section 4 or [23]). In
principle one could use the bond orientational susceptibility
as a criterion for first order or second order transition [36].
A symmetric peak shape is predicted for second order or
continuous transition whereas for first order transitions the
limit of the susceptibility from above and below the transition
should be different. Due to the limited temperature resolution
in our data we do not want to overestimate this topic but at a
first glance the data seem to be consistent with a second order
transition.

8. Structure factor

The structure factor is another often used physical quantity to
identify the freezing transitions. It is defined by

S(q) =
1
N
〈ρ(q)ρ(−q)〉 (15)

where the spatial Fourier transform of the number density
ρ(q) is given by

6
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Figure 6. The structure factor S(q) in the liquid phase (top) and
crystalline phase (bottom). The rectangular cross in the center is an
artifact due to the finite field of view.

ρ(q) =
N∑

i=1

exp(iqri). (16)

Here 〈〉 denotes an ensemble average over N particles located
at positions ri. Since we know the time dependent trajectories
of the particles in the field of view we calculate the structure
factor as function of time

S(q, t) =
1
N

N∑
i=1

N∑
j=1

exp(iqri(t)) exp(−iqrj(t)) (17)

and determine S(q) = n−1
t
∑nt

t=1S(q, t) by a time average over
nt > 70 statistically independent particle configurations.

Figure 6 shows the structure factor S(q) in the
isotropic liquid and crystalline phases calculated from particle
trajectories. Performing an azimuthal average gives the
classical structure factor S(q). Hansen and Verlet argued
that freezing is associated with the amplitude S(q0) of
the first maximum of the isotropic structure factor. A 3D
liquid freezes when S(q0) exceeds a characteristic value
of 2.85 [37]. The predictions of the characteristic value in

Figure 7. The isotropic structure factor S(q) for different
interaction parameters. The curves are shifted for reasons of clarity;
0 decreases from top to bottom with the same order as in the legend.

Figure 8. Amplitude of the first maximum of the structure factor
S(q0). At the freezing point 0 = 60 the amplitude S(q0) ' 10 for
the system with long-range particle interaction. Two error-bars are
shown in the isotropic and crystalline phases, calculated as the time
average from different time steps at the given temperature.

2D resulting from simulations vary from S(q0) = 4.4 for
particles with hard core and Coulomb interaction [38] to
S(q0) = 5.75 [39] for particles with r−12-interaction. Figure 7
shows the temperature dependent isotropic structure factor
S(q) which is obtained by an angular average of the structure
factor S(q). The maximum of the isotropic structure factor
S(q0) increases continuously as the temperature decreases
(increasing interaction parameter 0). Additionally the second
maximum splits into two peaks which reflects an evolving
hexagonal structure. As shown in figure 8, S(q0) rises slowly
in the liquid and hexatic phases followed by a sharp rise after
crossing the freezing point 0 = 60. The characteristic value is
S(q0) ' 10 and thus exceeds the estimated value by a factor of
≈2 for our system with long-range dipole–dipole interaction
between the particles.

Another criterion about the global order is given by the
line shape of the angular intensity of the structure factor.

7



J. Phys.: Condens. Matter 24 (2012) 464118 P Dillmann et al

Figure 9. The line shape of the Bragg peak in the solid phase
(0 = 80.4) and the fit with a Lorentzian function (dashed line) and
in the hexatic phase (0 = 58.0) with an SQL function fit (dotted
line). In the isotropic liquid (0 = 39.5) the intensity shows no
angular dependence. The curves are shifted for clarity. The inset
shows the ratio of the goodness-of-fit statistics as a function of
system temperature. Above 0m = 60 the Lorentzian function fits
better and below 0m an SQL function fits better (except for the
data-point at 0 = 58, see main text).

According to [40, 41] the line shapes of the Bragg peaks in
the solid state are given by a Lorentzian function S(θ0) =

[(θ0 − θ)
2
+ κ2
]
−1 where θ0 is the angular position of the

maximum of a Bragg peak, κ is the angular width of the
Lorentzian function and the in-plane angle θ ranges from
θ − π/6 to θ + π/6 because of the sixfold symmetry. In
the hexatic phase a square-root Lorentzian (SRL) behavior
S(θ0) = [(θ0 − θ)

2
+ κ2
]
−1/2 is expected. The line shapes

of the Bragg peaks in the solid 0 = 80.4 and hexatic 0 =
58.0 phases are shown in figure 9 whereas in the isotropic
liquid state 0 = 39.5 no angular dependence of the intensity
is observed. To evaluate the behavior of the line shapes for
different interaction parameters in the solid and hexatic phases
a fit with a Lorentzian as well as a square-root Lorentzian
function was executed. The line shape was determined on
the basis of the reduced chi-square goodness-of-fit statistic
χ2 of the fits. The ratio χ2

L/χ
2
SRL of the Lorentzian and

square-root Lorentzian reduced chi-square goodness-of-fit
statistics is given in the inset of figure 9. The line shapes in
the solid state are well reproduced by a fit with a Lorentzian
function χ2

L/χ
2
SRL < 1 while in the hexatic phase a square-root

Lorentzian function fits better, χ2
L/χ

2
SRL > 1. Only in the

vicinity of the hexatic to isotropic liquid phase transition at
0i = 57.5 is this not the case for the data-point at 0 = 58.
This might be due to the fact that below 0i the peaks should
disappear and this data-point is too close to the isotropic
transition to distinguish unambiguously between Lorentzian
and square-root Lorentzian azimuthal shape.

9. The Löwen–Palberg–Simon criterion

Löwen et al [42] introduced a freezing criterion based on
the dynamical properties of 3D systems. Their criterion

Figure 10. The temperature dependent ratios of the short-time
versus long-time self-diffusion coefficients DL/D0. At the freezing
point DL/D0 ≈ 0.03 which has to be compared to a value of
DL/D0 = 0.086 expected from simulation. The inset shows the time
dependent diffusion constant calculated for different time-windows
from the mean squared displacement.

states that a system starts to solidify if the ratio of the
long-time self-diffusion coefficient DL and the short-time
self-diffusion coefficient D0 reaches a critical value of 0.1.
Brownian dynamics simulations of different pair potentials
led to critical values in 2D between 0.072 (hard disks) and
0.099 (r−12 potential). In the case of a dipolar interaction
a critical value of 0.086 was obtained [43]. The short-time
and long-time self-diffusion coefficients are related to the
mean-square displacement1r2

= 1/N
∑N

i=1[ri(t)−ri(0)]2 by
the following equations:

D0 = lim
t→0

1r2

4t
(18)

DL = lim
t→∞

1r2

4t
. (19)

The ratios of the short-time and long-time self-diffusion
coefficients for different interaction parameters are shown
in figure 10. The critical value expected for the freezing
point from simulation with a dipolar interaction cannot be
reproduced. At the solid–hexatic phase transition DL/D0 ≈

0.03 which is a factor of three smaller compared to computer
simulation for about 1000 dipolar particles [43]. In a
poly-crystalline system of soft spheres a threshold of about
DL/D0 = 0.08 is reported [25] supporting the simulations.
Since we know that grain boundaries influence the 2D
dynamical Lindemann parameter we expect a difference in
the long-time diffusion coefficient between systems with
and without grain boundaries. Additionally the short-time
diffusion coefficient of particles at a water/air interface is
larger compared to that of particles in the bulk. This together
with the fact that grain boundaries are not visible in our field
of view might explain the small value of 0.03 in our system.
Zippelius [44] pointed out that the dependence of the ratio
DL/D0 as a function of temperature may be used as a criterion
for first and second order transition. First order transitions
are characterized by a discontinuous jump at Tm whereas a
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Figure 11. The fraction of particles assigning to three different
classes A, B and C. The error-bars (calculated as the time average
for different time steps at a given temperature) are smaller than the
symbols.

smooth change should be found for KTHNY-like behavior.
Figure 10 shows a continuous variation as a function of system
temperature. This again supports the result that our system
melts according to KTHNY theory.

10. Shape factor

Moučka and Nezbeda introduced a shape factor ζ to analyze
structural changes occurring for simulations of a hard disk
system in the region of phase transitions [45]. The shape factor
of particle i is defined as

ζi =
C2

i

4πSi
(20)

where Ci and Si correspond to the perimeter and area of
the Voronoi cell of the particle. The shape factor for a
regular polygon with n edges is given by ζ reg

n = n/π tan(π/n).
They observed that the distribution of the shape factor P(ζ )
becomes bimodal near the freezing point. The distribution
in the liquid state is broad and the maximum is located
at relatively high ζ -values whereas in the solid a sharp
distribution with a maximum near the value of a regular
hexagon, ζ = 1.03, is given. This behavior is explained by
the evolution from different types of cells which are also
distorted in the liquid to more regular hexagonal cells in the
solid. Reis et al [46] classified the particles of a granular fluid
into three classes according to their shape factors. Particles
with ζ < ζmin belong to class A, particles with ζmin < ζ < ζu
belong to class B and particles with ζ > ζu belong to class C
where ζmin = 1.159 and ζu = 1.25. If the numbers of particles
in classes A and B were equal they observed the transition
from a liquid to an intermediate phase (coexistence or hexatic
phase could not be evaluated). Approaching the freezing point
a sharp decline of the number of class B particles occurred in
the intermediate phase. After crossing the freezing point the
number of class B particles decreased much more moderately
in comparison with the intermediate phase.

Figure 12. The distribution of shape factors P(ζ ) for different
interaction parameters. The distribution changes from a bimodal
shape for 0 < 60.0 to a unimodal shape in the solid, 0 ≥ 60.

Using the classification procedure described in [46] we
obtain an identical value for ζmin and a slightly deviating
value ζu = 1.22. In accordance with the granular system
the slope of the fraction of particle class B changes at the
freezing point as shown in figure 11. On the other hand
the fractions of classes A and B are equal at 0 ≈ 20 far
away from the isotropic liquid–hexatic phase transition. We
ascribe this different behavior to the structural changes which
are less pronounced at the phase transitions compared to
the hard disk or granular systems. This can been seen in
figure 12 where even deep in the liquid state at 0 = 5.9 a
bimodal distribution P(ζ ) instead of a flat one exists. This
indicates that in the liquid as well as in the crystalline state
a hexagonal configuration of the particles is preferred. This
assumption is confirmed by the fact that more than 50% of
the particles at 0 = 5.9 are still sixfold coordinated. For our
thermal system with long-range interaction, the phases are not
identified unambiguously using shape factors.

11. Minkowski functionals

In addition to the previously described criteria we tested
tentatively whether any hint for phase transitions could
be derived from the behavior of Minkowski measures.
Minkowski measures have been successfully adopted to spec-
ify spatial patterns, e.g. during spinodal decomposition [47],
the evolution of galaxy clusters [48] or partial clustering in
a 2D colloidal glass former [49]. Integral geometry offers
a set of topological and geometrical descriptors (Minkowski
functionals) to characterize spatial patterns. The operation of
the Minkowski functional V on patterns P,Q, . . . has to obey
three properties to be a morphological measure.

(i) Motion invariance: V(gP + t) = V(P) for g and t being
any rotation and translation.

(ii) Additivity: V(P ∪ Q) = V(P)+ V(Q)− V(P ∩ Q).

(iii) Continuity: a slight distortion of a pattern leads to a
continuous change of V .

9
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Figure 13. In 2D systems three independent Minkowski functionals exist which may be chosen as the surface area A, the circumference U
and the Euler characteristic χ = Na − H.

According to Hadwiger [50] there exist exactly D + 1
linear independent Minkowski functionals in D dimension.
In the case of D = 2 the Minkowski measures are related
to the surface area A, the circumference U and the Euler
characteristic χ = Na −H which is given by the difference of
the number of connected surfaces Na and number of holes H.

We create a pattern for a single particle configuration by
placing a cover disk with constant radius R at each particle
position (see figure 13(a)). Morphological information about
the particle configuration is then obtained by determining
the Minkowski functionals as a function of cover radius
R. As crystals in 2D possess sixfold symmetry we briefly
describe the behavior of the Minkowski functionals for a
perfect hexagonal lattice. The cover disks do not overlap for
radius 0 ≤ R < a/2. The surface area and circumference are
given by the area Ad(R) and circumference Ud(R) respectively
of a cover disk times the number of cover disks N and the
Euler characteristic is χ = N. As requested by additivity for
a/2 ≤ R <

√
3a/3 the surface area is given by the sum of

the area of the cover disks minus the overlapping areas which
are connected with a slower increase of the surface area.
Despite the radius being increased the circumference starts
to decrease because the parts of the perimeters belonging to
the overlapping areas of the disks are disregarded. The Euler
characteristic becomes negative since the overlapping leads to
only one connected surface while holes are formed. If the disk
radius reaches a value of R ≥

√
3a/3 the whole area is covered

and the circumference is equal to zero. The holes disappear,
i.e. χ = 1.

In figures 13(b)–(d) the three Minkowski functionals
(b) surface area A, (c) circumference U and (d) Euler
characteristic χ are shown for crystalline, hexatic and
isotropic liquid systems. Note that A/Atotal, U/N and χ/N
are plotted. All Minkowski functionals reflect in principle
the behavior which is characteristic for the hexagonal lattice.
The deviations from the expected curves increase with the

inverse system temperature, i.e. with the thermal motion.
The increase of the surface area is proportional to R2

while the circumference is proportional to R and χ = 1
as expected for small radii. The range where holes in the
perfect hexagonal lattice exist is broadened to 0.35a ≤ R ≤
0.8a. For R > 0.8a the full area is covered, U/N = 0
and χ/N → 0. No qualitative changes of the Minkowski
functionals can be observed at the phase transitions. Changes
of the Minkowski functionals which may emerge due
to the emergence of defects cannot be identified due to
their number density being quite small and due to strong
thermal fluctuations of the particles. In contrast to a
binary dipole–dipole system where structural heterogeneities
have been quantified [49], Minkowski functionals are not
applicable as order parameters to identify phase transition
temperatures for our mono-disperse system.

12. Conclusion

In a two-dimensional system of colloids with repulsive
dipolar interaction several criteria based on structural as well
as dynamical quantities were compared to identify phase
transitions. The criteria are the bond orientational correlation
function, the Larson–Grier criterion, the 2D dynamic
Lindemann parameter, the bond orientational susceptibility,
the 2D Hansen–Verlet rule, the Löwen–Palberg–Simon
criterion as well as the shape factor and the Minkowski
functionals. A very sensitive tool to distinguish different
symmetries is the bond order correlation function g6(r).
The transition from algebraic decay to exponential decay
marks the hexatic to isotropic fluid phase transition. The
bond order parameter susceptibility provides similar results
for the hexatic–isotropic transition and might be used as
an alternative measure even applicable in poly-crystalline
samples [25] which we may call ‘poly-domain hexatic’ or
‘polyhexaline’, since the measure is taken above Tm.

10
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The counterpart of g6(r) is the density–density corre-
lation function (equation (5)) for the hexatic to crystalline
transition where the crossover from quasi-long-range to
short-range translational order marks the symmetry breaking
temperature. This quantity is rarely used in experiment since
the reciprocal lattice vector is not precise enough to determine
whether Mermin–Wagner fluctuations are present. Therefore
we use a dynamic quantity, the mean-squared-displacement
with respect to the nearest neighbors, namely the 2D dynamic
Lindemann parameter, to identify the hexatic to crystalline
transition. The 2D Lindemann parameter is a sensitive tool;
it stays finite in the crystal but diverges in the fluid phase
provided that the system is free of grain boundaries according
to KTHNY theory. This should be the case for transitions with
continuous character but on the experimental side substrate
interaction, density and temperature gradients or large cooling
rates may induce grain boundaries.

Since the local order in 2D systems is sixfold in
both the fluid and the solid phases, local measures like
the Larson–Grier criterion and the shape factor of Voronoi
cells do not change significantly on crossing transition
temperatures and are rather insensitive to global symmetry
changes. This is at least true for our system with purely
repulsive pair interaction where density differences do not
appear in different phases.

The Hansen–Verlet rule modified for two-dimensional
systems measures the height of the first peak of the structure
factor. Values between S(q0) = 4.4 and S(q0) = 5.75 are
reported in simulations. In our dipolar system we determined
S(q0) ' 10 at the melting point. A critical value might be
given for individual systems but a universal value should be
taken with care. This is the same for the ratio of the long-time
versus short-time diffusion coefficient. In 3D systems the
Löwen–Palberg–Simon criterion states that crystallization
takes place at a critical value of 0.1. In 2D values between
0.072 and 0.099 are found in simulations, whereas in our
system we found a value of 0.03. The discrepancies might be
explained by grain boundaries as we do not know whether
they were present in the simulations.

Finally we presented Minkowski functionals as topolog-
ical measures to identify the phases. While we found the
Minkowski functionals to be sensitive to locally heteroge-
neous distributions of particles in a binary mixture, they
were rather insensitive to global symmetry changes and phase
transitions.
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