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The Kibble–Zurek mechanism describes the evolution of topolog-
ical defect structures like domain walls, strings, and monopoles
when a system is driven through a second-order phase transition.
The model is used on very different scales like the Higgs field in
the early universe or quantum fluids in condensed matter systems.
A defect structure naturally arises during cooling if separated re-
gions are too far apart to communicate (e.g., about their orienta-
tion or phase) due to finite signal velocity. This lack of causality
results in separated domains with different (degenerated) locally
broken symmetry. Within this picture, we investigate the nonequi-
librium dynamics in a condensed matter analog, a 2D ensemble of
colloidal particles. In equilibrium, it obeys the so-called Kosterlitz–
Thouless–Halperin–Nelson–Young (KTHNY) melting scenario with
continuous (second order-like) phase transitions. The ensemble is
exposed to a set of finite cooling rates covering roughly three
orders of magnitude. Along this process, we analyze the defect
and domain structure quantitatively via video microscopy and de-
termine the scaling of the corresponding length scales as a func-
tion of the cooling rate. We indeed observe the scaling predicted
by the Kibble–Zurek mechanism for the KTHNY universality class.
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In the formalism of gauge theory with spontaneously broken
symmetry, Zel’dovich et al. and Kibble postulated a cosmo-

logical phase transition during the cooling down of the early
universe. This transition leads to degenerated states of vacua
below a critical temperature, separated or dispersed by defect
structures as domain walls, strings, or monopoles (1–3). In the
course of the transition, the vacuum can be described via an
N-component, scalar order parameter ϕ (known as the Higgs
field) underlying an effective potential

V = aϕ2 + b
�
ϕ2 − η20

�2
, [1]

where a is temperature dependent, b is a constant, and η0 is the
modulus of hϕi at T = 0. For high temperatures, V has a single
minimum at ϕ= 0 (high symmetry) but develops a minimum
“landscape” of degenerated vacua below a critical temperature
Tc (e.g., the so-called sombrero shape for N = 2). Cooling down
from the high symmetry phase, the system undergoes a phase
transition at Tc into an ordered (low symmetry) phase with non-
zero hϕi. For T <Tc it holds

hϕi2 = η20
�
1−T2�T2

c

�
= η2ðTÞ. [2]

Caused by thermal fluctuations, one can expect that below Tc,
hϕi takes different nonzero values in regions that are not con-
nected by causality. The question now arising concerns the de-
termination of the typical length scale ξd of these regions and
their separation. For a finite cooling rate, ξd is limited by the
speed of propagating information, which is given by the finite
speed of light defining an ultimate event horizon. Independent of
the nature of the limiting causality, Kibble argued that as long as
the difference in free energy ΔF (of a certain system volume)
between its high symmetry state hϕi= 0 and a possible finite
value of hϕi just below Tc is less than kBT, the volume can jump
between both phases. The temperature at which ΔF = kBT is

called the Ginzburg temperature TG, and the length scale ξd of
the initial (proto)domains is supposed to be equal to the corre-
lation length at that temperature: ξd = ξðTGÞ (2).
The geometry of the defect network that separates the un-

correlated domains is given by the topology of the manifold of
degenerated states that can exist in the low symmetry phase.
Thus, it depends strongly on the dimensionality of the system D
and on the dimension N of the order parameter itself. Regarding
the square root of Eq. 2, the expectation value of a one-com-
ponent order parameter (N = 1) can only take two different low
symmetry values hϕi=±ηðTÞ (e.g., the magnetization in a 2D or
3D Ising model): the manifold of the possible states is discon-
nected. This topological constraint has a crucial effect if one
considers a mesh of symmetry broken domains where hϕi is
chosen randomly as either +η or −η. If two neighboring (but
uncorrelated) domains have the same expectation value of hϕi,
they can merge. In contrast, domains with an opposite expecta-
tion value will be separated by a domain wall in 3D (or a domain
line in 2D). At its center, the domain wall attains a value of
hϕi= 0, providing a continuous crossover of the expectation
value between the domains (Fig. 1A). Consider now N = 2: hϕi
can take any value on a circle, e.g., hϕi2 = hϕxi2 + hϕyi2 = η2ðTÞ
(all of the order parameter values that are lying on the minimum
circle of the sombrero are degenerated). Because the manifold
of possible low symmetry states is now connected, hϕi can vary
smoothly along a path (Fig. 1B). In a network of symmetry
broken domains in two dimensions, at least three domains (in
Fig. 1B separated by dashed lines) meet at a mutual edge. On a
closed path around the edge, the expectation value hϕimight be
either constant along the path (for a global, uniform ϕ) but can
also vary by a multiple of 2π (in analogy to the winding numbers
in liquid crystals). In the first case, the closed path can be re-
duced to a point with hϕi≠ 0, and no defect is built. If the path is
shrunk in the second case, the field eventually has to attain
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hϕi= 0 within the path, and one remains with a monopole for
D= 2 or a string for D= 3 (2, 3). A condensed matter analog
would be a vortex of normal fluid with quantized circulation in
superfluid helium. For N = 3 and D= 3, four domains can meet at
a mutual point, and the degenerated solutions of the low tem-
perature phase lie on a sphere: hϕi2 = hϕxi2 + hϕyi2 + hϕzi2. If the
field now again varies circularly on a spherical path (all field
arrows point radially outward), a shrinking of this sphere leads to
a monopole in three dimensions (2, 3).
Zurek extended Kibble’s predictions and transferred his con-

siderations to quantum condensed matter systems. He suggested
that 4He should intrinsically develop a defect structure when
quenched from the normal to the superfluid phase (4, 5). For
superfluid 4He, the order parameter ψ = jψ jexpðiΘÞ is complex
with two independent components: magnitude jψ j and phase Θ
(the superfluid density is given by jψ j2). A nontrivial, static so-
lution of the equation of state with a Ginzburg–Landau potential
yields ψ =ψ0ðrÞexpðinφÞ, where r and φ are cylindrical co-
ordinates, n∈Z, and ψ0ð0Þ= 0. This solution is called a vortex
line, which is topologically equivalent to a string for the case
N = 2 we discussed before. In the vicinity of the critical tem-
perature during a quench from the normal fluid to the superfluid
state, ψ will be chosen randomly in uncorrelated regions, leading
to a string network of normal fluid vortices. In condensed matter
systems, the role of the limiting speed of light is taken by the
sound velocity (in 4He, the second sound). This upper boundary
leads to a finite speed of the propagation of order parameter
fluctuations and sets a “sonic horizon.”
Zurek argued that the correlation length is frozen-out close to

the transition point or even far before depending on the cooling
rate (4, 5). Consider the divergence of the correlation length ξ for
a second-order transition, e.g., ξ= ξ0jej−ν, where e= ðT −TcÞ=Tc
is the reduced temperature. If the cooling is infinitely slow, the
system behaves as in equilibrium: ξ will diverge close to the
transition and the system is a monodomain. For an instantaneous
quench, the system has minimal time to adapt to its surrounding:
ξ will be frozen-out at the beginning of the quench. For second-
order phase transitions, the divergence of correlation lengths is
accompanied by the divergence of the correlation time τ= τ0jej−μ,
which is due to the critical slowing down of order parameter
fluctuations. If the time t it takes to reach Tc for a given cooling
rate is larger than the correlation time, the system stays in equi-
librium and the dynamic is adiabatic. Nonetheless, for every finite
but nonzero cooling rate, t eventually becomes smaller than τ, and
the system falls out of equilibrium before Tc is reached. The
moment when both the correlation time and the time it takes to
reach Tc coincide defines the freeze-out time.

t̂= τð̂tÞ. [3]

The frozen-out correlation length ξ̂ is then set at the temperature
ê of the corresponding freeze-out time: ξ̂= ξðêÞ= ξð̂tÞ. For a lin-
ear temperature quench

e= ðT −TcÞ=Tc = t
�
τq, [4]

with the quench time scale τq, one observes t̂= ðτ0τμqÞ1=ð1+μÞ and

ξ̂= ξð̂tÞ= ξ0
�
τq
�
τ0
�ν=ð1+μÞ. [5]

For the Ginzburg–Landau model (ν= 1=2, μ= 1), one finds the
scaling ξ̂∼ τ1=4q , whereas a renormalization group correction
(ν= 2=3) leads to ξ̂∼ τ1=3q (4, 5).
A frequently used approximation is that when the adiabatic

regime ends at t̂ before the transition, the correlation length
cannot follow the critical behavior until τ again exceeds the time
t when Tc is passed. Given a symmetric divergence of τ around
Tc, this is the time t̂ after the transition. The period in between is
known as the impulse regime, in which the correlation length is
assumed not to evolve further. A recent analytical investigation,
however, suggests that in this period, the system falls into a re-
gime of critical coarse graining (6). There, the typical length
scale of correlated domains continues to grow because local
fluctuations are still allowed, and the system is out of equilib-
rium. On the other side, numerical studies in which dissipative
contributions and cooling rates were alternatively varied before
and after the transition indicate that the final length scale of the
defect and domain network is entirely determined after the
transition (7). Several efforts have been made to provide ex-
perimental verification of the Kibble–Zurek mechanism in a
variety of systems, e.g., in liquid crystals (8) (the transition is
weakly first order but the defect network can easily observed
with cross polarization microscopy), superfluid 3He (9), super-
conducting systems (10), convective, intrinsically out of equilib-
rium systems (11), multiferroics (12), quantum systems (13), ion
crystals (14, 15), and Bose–Einstein condensates (16) (the latter
two systems contain the effect of inhomogeneities due to, for
example, temperature gradients). A detailed review concerning
the significance and limitations of these experiments can be
found in ref. 17.
In this experimental study, we test the validity and applicability

of the Kibble–Zurek mechanism in a 2D colloidal model system
whose equilibrium thermodynamics follow the microscopically
motivated Kosterlitz–Thouless–Halperin–Nelson–Young (KTHNY)
theory. This theory predicts a continuous, two-step melting be-
havior whose dynamics, however, are quantitatively different
from phenomenological second-order phase transitions described
by the Ginzburg–Landau model. We applied cooling rates over
roughly three orders of magnitude, for which we changed the
control parameter with high resolution and homogeneously
throughout the sample without temperature gradients. Single
particle resolution provides a quantitative determination of de-
fect and domain structures during the entire quench procedure,
and the precise knowledge of the equilibrium dynamics allows
determination of the scaling behavior of corresponding length
scales at the freeze-out times. In the following, we validate that
the Kibble–Zurek mechanism can be successfully applied to the
KTHNY universality class.

Defects and Symmetry Breaking in 2D Crystallization
The closed packed crystalline structure in two dimensions is a
hexagonal crystal with sixfold symmetry. The thermodynamics of
such a crystal can analytically be described via the KTHNY
theory, a microscopic, two-step melting scenario (including two
continuous transitions) that is based on elasticity theory and a
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Fig. 1. Emergence of defects in the Higgs field that is illustrated with red
vectors (shown in 2D for simplicity). (A) For N= 1 and D= 3, domain walls can
appear (strings for D= 2). (B) For N= 2 and D= 3, nontrivial topologies are
strings (monopoles for D= 2). The defects are regions where the order pa-
rameter ϕ retains the high symmetry phase (hϕi= 0) to moderate between
different degenerated orientations of the symmetry broken field.
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renormalization group analysis of topological defects (18–20). In
the KTHNY formalism, the orientationally long range-ordered
crystalline phase melts at a temperature Tm via the dissociation
of pairs of dislocations into a hexatic fluid, which is unknown in
3D systems. This fluid is characterized by quasi-long-range ori-
entational but short-range translational order. In a triangular
lattice, dislocations are point defects and consist of two neigh-
boring particles with five and seven nearest neighbors, re-
spectively, surrounded by sixfold coordinated particles. At a
higher temperature Ti, dislocations start to unbind further into
isolated disclinations (a disclination is a particle with five or
seven nearest neighbors surrounded by sixfold coordinated par-
ticles), and the system enters an isotropic fluid with short-range
orientational and translational order. A suitable orientational
order parameter is the local bond order field ψ6ð~rj, tÞ=
n−1j

P
ke

i6θjkðtÞ =
��ψ6ð~rj, tÞ

��eiΘjðtÞ, which is a complex number with
magnitude

��ψ6ð~rj, tÞ
�� and phase ΘjðtÞ defined at the discrete par-

ticle positions~rj. ΘjðtÞ is the average bond orientation for a spe-
cific particle. The k-sum runs over all nj nearest neighbors of
particle j, and θjk is the angle of the kth bond with respect to a
certain reference axis. If particle j is perfectly sixfold coordinated
[e.g., all θjkðtÞ equal an ascending multiple of π=3], the local bond
order parameter attains

��ψ6ð~rj, tÞ
��= 1. A five- or sevenfold co-

ordinated particle yields
��ψ6ð~rj, tÞ

��J 0. The three different
phases can be distinguished via the spatial correlation g6ðrÞ=
hψp

6ð~0Þψ6ð rj!Þi or temporal correlation g6ðtÞ= hψp
6ð0Þψ6ðtÞi of the

local bond order parameter. For large r and t, respectively, each
correlation attains a finite value in the (mono)crystalline phase, de-
cays algebraically in the hexatic fluid, and exponentially∼ expð−r=ξ6Þ
and ∼ expð−t=τ6Þ in the isotropic fluid (20, 21). Unlike second-
order phase transitions where correlations typically diverge alge-
braically, the orientational correlation length ξ6 and time τ6 di-
verge in the KTHNY formalism exponentially at Ti

ξ6 ∼ exp
�
ajej−1=2� and τ6 ∼ exp

�
bjej−1=2�, [6]

where e= ðT −TiÞ=Ti, and a and b are constants (20, 22). This
peculiarity is the reason why KTHNY melting is named contin-
uous instead of second order. In equilibrium, the KTHNY sce-
nario has been verified successfully for our colloidal system in
various experimental studies (23–25).
To transfer this structural 2D phase behavior into the frame-

work of the Kibble–Zurek mechanism, we start in the high
temperature phase (isotropic fluid) and describe the symmetry
breaking with the spatial distribution of the bond order parameter.
Because in 2D the local symmetry is sixfold in the crystal and the
fluid, the isotropic phase is a mixture of sixfold and equally num-
bered five- and sevenfold particles (other coordination numbers
are extremely rare and can be neglected). During cooling, isolated
disclinations combine to dislocations that, for infinite slow cooling
rates, can annihilate into sixfold particles with a uniform director
field. This uniformity is given by a global phase, characterizing the

orientation of the crystal axis. Spontaneous symmetry breaking
implies that all possible global crystal orientations are degenerated,
and the Kibble–Zurek mechanism predicts that in the presence of
critical fluctuations the system cannot gain a global phase at finite
cooling rates: Locally, symmetry broken domains will emerge,
which will have different orientations in causally separated regions.
The final state is a polycrystalline network with frozen-in defects.
As in the case of superfluid 4He, ψ6ð~rj, tÞ is complex with two
independent components (N = 2). Consequently, we expect to
observe monopoles in two dimensions. The phase of ψ6ð~rj, tÞ is
invariant under a change in the particular bond angles of
ΔθjkðtÞ=±nπ=3 (n∈N), which is caused by the sixfold orientation
of the triangular lattice. Similar to the Higgs field or the superfluid,
one cannot consider a closed (discrete) path in ψ6ð~r, tÞ on which
θjkðtÞ changes by an amount of ±π=3, leaving the orientational field
invariant. Reducing this path to a point, ψ6ð~r, tÞ must tend toward
zero at the center to maintain continuity. Because the orientational
field is defined at discrete positions, the defect is a single particle
marked as a monopole of the high symmetry phase. In fact, this
coincides with the definition of disclinations in the KTHNY for-
malism (20): The particle at the center is an isolated five- or sev-
enfold coordinated site. Fig. 2 illustrates this for a bond on a closed
path. Going counterclockwise around the defect, the bond angle
changes by an amount of +π=3 for a fivefold (Fig. 2A) and by −π=3
for a sevenfold site (Fig. 2B). [In principle, also larger changes in
θjkðtÞ are possible, e.g., for n= 2, a four- or eightfold oriented site,
but these are extremely rare.] In KTHNY theory the monopoles
(disclinations) combine to dipoles (dislocations) that can only an-
nihilate completely if their orientation is exactly antiparallel. At
finite cooling rates, they arrange in chains, separating symmetry
broken domains of different orientation: chains of dislocations can
be regarded as strings or 2D domain walls.

Colloidal Monolayer and Cooling Procedure
Our colloidal model system consists of polystyrene beads with
diameter σ = 4.5 μm, dispersed in water and sterically stabilized
with the soap SDS. The beads are doped with iron oxide nano-
particles that result in a superparamagnetic behavior and a mass
density of 1.7 kg/dm3. The colloidal suspension is sealed within a
millimeter-sized glass cell where sedimentation leads to the for-
mation of a monolayer of beads on the bottom glass plate. The
whole layer consists of >105 particles and in a 1,158 μm × 865 μm
subwindow, ≈ 5,700 particles are tracked with a spatial resolution
of submicrometers and a time resolution in the order of seconds.
The system is kept at room temperature and exempt from density
gradients due to a months-long precise control of the horizontal
inclination down to microradian. The potential energy can be
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Fig. 2. Sketch of a fivefold oriented (A) and sevenfold oriented (B) dis-
clination. The red arrows illustrate the change in bond angle (blue) when
circling on an anticlockwise path around the defect.
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to Eq. 6) and the time t left until the transition temperature is reached for
different cooling rates (colored straight lines, Eq. 9) as a function of inverse
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tuned by an external magnetic field H applied perpendicular to
the monolayer, which induces a repulsive dipole–dipole inter-
action between the particles. The ratio between potential energy
Emag and thermal energy kBT

Γ=
Emag

kBT
=
μ0ðπnÞ3=2ð χHÞ2

4πkBT
, [7]

acts as inverse temperature (or dimensional pressure for fixed
volume and particle number). n= 1=a20 is the 2D particle den-
sity with a mean particle distance a0 ≈ 13 μm, and χ = 1.9×
10−11  Am2=T is the magnetic susceptibility of the beads. Γ is the
thermodynamic control parameter: A small magnetic field corre-
sponds to a large temperature and vice versa. Measured values
of the equilibrium melting temperatures are Γm ≈ 70.3 for the
crystal/hexatic transition and Γi ≈ 67.3 for the hexatic/isotropic
transition (25). The cooling procedure is as follows: we equili-
brate the system deep in the isotropic liquid at Γ0 ≈ 25 and apply
linear cooling rates _Γ=ΔΓ=Δt deep into the crystalline phase up to
Γend ≈ 100; thenceforward, we let the system equilibrate. We per-
form different rates, ranging over almost three decades from
_Γ= 0.000042 1=s up to _Γ= 0.0326 1=s. The slowest cooling rate
corresponds to a quench time of ≈ 19 days and the fastest one to
≈ 40min. We would like to emphasize that with the given control
parameter there is no heat transport from the surface as in 3D
bulk material. The lack of gradients rules out a temperature
gradient-assisted annealing of defects that might be present in
inhomogeneous systems.

Structure and Dynamics of Defects and Domains
The key element of the Kibble–Zurek mechanism is a frozen-out
correlation length ξ̂ as the system falls out of equilibrium at the
freeze-out time t̂. For slow cooling rates, the system can follow
adiabatically closer to the transition (large ξ̂) than for fast rates
where the systems reaches the freeze-out time earlier (small ξ̂).
To find t̂, we determine the orientational correlation time τ6
according the KTHNY theory by fitting g6ðtÞ∼ expð−t=τ6Þ in the

isotropic fluid for independent equilibrium measurements. The
measured values for the correlation time τ6 as well as a fit with

τ6 = τ0 exp
�
bτj1=Γ− 1=Γcj−1=2

�
, [8]

is shown in Fig. 3 (right ordinate). The time left to the isotropic–
hexatic transition is given by

t= ðΓi −ΓÞ� _Γ, [9]

and is also plotted in Fig. 3 (left ordinate) for various cooling rates
including the slowest and the fastest one. The points of intersection

t̂= τ0 exp
h
bτ
��1�Γ�̂t, _Γ�− 1=Γc

��−1=2i, [10]

define the freeze-out temperatures Γ̂=Γð̂tÞ.
The length scale of the defect network can be measured by the

overall defect concentration ρ (counting all particles being not
sixfold, normalized by the total number of particles) in the
ψ6ð~r, tÞ field. Fig. 4 (Upper) shows the evolution of ρ for the same
cooling rates _Γ as in Fig. 3, as well as for the equilibrium
(melting) behavior (25). One recognizes that the course of ρ
deviates from the equilibrium case in advance of the isotropic/
hexatic transition at Γi ≈ 67.3. This deviation appears at different
times for distinct cooling rates and marks the end of the adia-
batic regime. Within the noise, deviations from the equilibrium
behavior start at the temperature Γ̂ given by the freeze-out time
t̂ (big colored dots). Beyond the adiabatic regime, the defect
density decreases, which is an indication of critical coarse grain-
ing as predicted in ref. 6. At Γi (and also Γm), the slope of the
curves increases with decreasing cooling rate, indicating a further
evolution, but the system cannot perform critical fluctuations.
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Fig. 4. Defect number density ρ and average domain size hAi (in units of a20)
as a function of Γ (∝ 1=T) during cooling from small Γ (=hot on the left side)
to large Γ (=cold on the right side). The curves cover the complete range of
cooling rates from _Γ= 0.000042 to _Γ= 0.033 and are averaged within an
interval ΔΓ= 0.4. Big dots mark the freeze-out temperatures Γ̂=Γðt̂Þ (colored
correspondingly to _Γ). Open symbols show the equilibrium melting behavior
(lines are a guide to the eye).
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C D

Fig. 5. Snapshot sections of the colloidal ensemble (992× 960 μm2, ≈ 4,000
particles) illustrating the defect (A and C) and domain configurations (B and
D) at the freeze out temperature Γ̂ for the fastest (A and B: _Γ=0.0326 1=s,
Γ̂≈ 30.3) and slowest cooling rate (C and D: _Γ= 0.000042 1=s, Γ̂≈ 66.8). The
defects are marked as follows. Particles with the five nearest neighbors are
red, seven nearest neighbors are green, and other defects are blue. Sixfold
coordinated particles are gray. Different symmetry broken domains are col-
ored individually, and high symmetry particles are displayed by smaller circles.
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The domain structure, on the other hand, can be characterized
quantitatively by analyzing symmetry broken domains with a
similar phase of ψ6ð~rj, tÞ. According to ref. 26, we define a particle
to be part of a symmetry broken domain if the following three
conditions are fulfilled for the particle itself and at least one
nearest neighbor: (i) the magnitude

��ψ6ð~rj, tÞ
�� of the local bond

order parameter must exceed 0.6 for both neighboring particles;
(ii) the bond length deviation of neighboring particles is less than
10% of the average particle distance a0; and (iii) the variation in
the average bond orientation ΔΘijðtÞ=

��Im½ψ6ð~riÞ�− Im½ψ6ð~rjÞ�
�� of

neighboring particles i and j must be less than 14° (less than 14°=6
in real space). Simply connected domains of particles that fulfill
all three criteria are merged to a local symmetry broken domain.
If a particle does not satisfy these conditions in respect to a
neighboring particle, it is assigned to the high symmetry phase
[almost all defects are identified as such due to their small value
of

��ψ6ð~rj, tÞ
��]. Fig. 4 (Lower) shows the evolution of the ensemble

average domain size hAi as a function of Γ. We observe a behavior
analog to ρ: domain formation significantly deviates from the
equilibrium case before Γi, namely around the freeze-out tem-
perature Γ̂ of the corresponding cooling rates _Γ. To compare both
networks in the following, we define the dimensionless lengths
ξdef = ρ−1=2 and ξdom = ðhAi=a20Þ1=2, which display the characteris-
tic length scales in units of a0.
Colloidal ensembles offer the unique possibility to monitor the

system and its domain and defect structure on single particle
level. Fig. 5 illustrates both (Left column for defects and right
column for domains) at the freeze-out temperature Γ̂ for the
fastest (Fig. 5 A and B) and the slowest (Fig. 5 C and D) cooling
rate. For _Γ= 0.0326 1=s (Fig. 5 A and B) where t̂ is already
reached at Γ̂= 30.3, the defect density is large, as is the number
of high symmetry particles. However, there is a significant
number of sixfold coordinated particles and a few orientationally
ordered domains (to accord for finite size effects, we will exclude
domains that hit the border of the field of view when evaluating
ξdom at Γ̂). At this point, the length scales are ξdef = 1.56± 0.01

and ξdom = 1.56± 0.03. For the slowest cooling rate _Γ=
0.000042 1=s (Fig. 5 C and D) where Γ̂= 66.7, the mean dis-
tance between defects, as well as the typical domain size, is signif-
icantly larger compared with the fastest cooling rate. We observe
ξdef = 2.36± 0.07 and ξdom = 2.30± 0.09.
To allow relaxation of the defect and domain structure after the

freeze-out time (6), we keep the temperature constant after
Γend ≈ 100 is reached. Fig. 6 shows the defect and domain config-
urations after an equilibration time of ≈ 5 h for the fastest cooling
rate (Fig. 6 A and B) where the quench time was ≈ 40 min and
after an equilibration time of ≈ 3 days for the slowest rate (Fig. 6 C
and D) where the quench time was ≈ 19 days. The different length
scale of the defect and symmetry broken domain network in re-
spect to the cooling rate is clearly visible: although we observe a
large number of domains for fast cooling, slow cooling results in
merely two large domains separated by a single grain boundary.
The final evolution will be given by classical coarse graining. The
ground state is known to be a monodomain but its observation lies
beyond experimental accessible times for our system.

Scaling Behavior
The main prediction of the Kibble–Zurek mechanism is a power
law dependence of the frozen-out correlation length ξ̂ as a
function of τq (Eq. 5), which results from the algebraic di-
vergence of the correlation, presuming Eqs. 3 and 4. In KTHNY
melting, ξ6 and τ6 diverge exponentially, and one has to solve Eq.
10 to find the implicit dependency t̂ð _ΓÞ. We did this numerically
for discrete values in the range of 4× 10−5 ≤ _Γ≤ 4× 10−2 and
determined the frozen-out orientational correlation length ξ̂6 for
a scaling τ6=τB = c  ξz6 with the dynamical exponent z (22). Here,
τB ≈ 171.6 s is the Brownian time that is the time a single particle
needs to diffuse its own diameter. Using Eq. 8, one finds with
Γðt, _ΓÞ from Eq. 9 the expression

ξ̂6
�
_Γ
�
=
�
τ0
cτB

	1=z
exp

"
bτ
z

�����Γc −Γi + _Γ̂t
�
_Γ
�

ΓcΓi −Γc _Γ̂t
�
_Γ
�
�����
−1=2#

. [11]

This function is plotted in Fig. 7 for z= 4.5 and c= 0.83 (red
curves) on a double logarithmic scale together with ξdef and

A B

C D

Fig. 6. Snapshot sections of the colloidal ensemble illustrating the defect
(A and C) and domain configurations (B and D) after quasi-equilibration of the
system for the fastest (A and B: _Γ= 0.0326  1=s, Γend ≈ 105) and slowest cooling
rate (C and D: _Γ= 0.000042  1=s, Γend ≈ 98). The system size and the labeling of
defects and domains are the same as in Fig. 5.
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Fig. 7. Length scale of the defect ξdef and domain network ξdom is plotted as
a function of the cooling rate _Γ (open symbols). Red lines are numerical
solutions of the transcendental equation following the freeze-out condition
for the KTHNY-like divergences (see text for definition). For comparison,
dashed blue lines are power law fits predicted by the standard Kibble–Zurek
mechanism that show the same algebraic exponent κ ≈0.06 for ξdef and ξdom.
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ξdom at the freeze-out temperature Γ̂. We find very good agree-
ment. Nonetheless, we fit for comparison the data via an alge-
braic scaling (blue dotted lines) of the form f ð _ΓÞ= a _Γ−κ

, for
which we observe κdef = 0.061± 0.001 and κdom = 0.061± 0.002.
The data are compatible with the algebraic decay only for in-
termediate cooling rates. The deviations from the standard Kib-
ble–Zurek mechanism for systems with second-order transitions
are in line with the temperature-quenched 2D XY model (27)
also having nonalgebraic divergences of the correlation length in
equilibrium and thus being in a similar universality class. The
small algebraic exponent κ can be explained by the relatively
large value of the dynamical exponent z, which regulates the
slope of ξ̂6ð _ΓÞ (in ref. 22, a value z= 2.5 was proposed for the
hard-disk system). The large value of z is due to quite long
correlation times in this colloidal system (Fig. 3), which are caused
by its overdamped dynamics. Note that the sonic horizon is set by
the sound velocity of the colloidal monolayer (and not the solvent)
being approximately millimeters per second, which is six orders of
magnitude slower compared with atomic systems.

Conclusions
We presented a colloidal model system, where structure formation
in spontaneously symmetry broken systems can be investigated with

single particle resolution. The theoretical framework is given by the
Kibble–Zurek mechanism, which describes domain formation on
different scales like the Higgs field shortly after the Big Bang or the
vortex network in 4He quenched into the superfluid state. Along
various cooling rates, we analyzed the development of defects and
symmetry broken domains when the systems fall out of equilibrium
and fluctuations of the order parameter cannot follow adiabatically
due to critical slowing down. Although 2D melting in the colloidal
monolayer is described by KTHNY theory where the divergence of
the relevant correlation lengths in equilibrium is exponential
(rather than algebraic as typically found in 3D systems), the central
idea of the Kibble–Zurek mechanism still holds, and the scaling of
the observed domain network is correctly described. Implicitly, this
shows that existence of grain boundaries cannot solely be used as
criterion for first-order phase transitions and nucleation or to
falsify second/continuous-order transitions because they natu-
rally arise for nonzero cooling rates. Those will always be present
on finite time scales in experiments and computer simulations
after preparation of the system.
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