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The supplemental material contains experimental details, information on the simulation and
coarse-graining methods, as well as theoretical and numerical details.

EXPERIMENTAL ASPECTS

Video microscopy provides access to the full phase
space information of the colloidal monolayer at all rel-
evant time and length scales. We record the trajecto-
ries of about 2300 colloidal particles (the whole system
consists of more than 105 particles) confined to two di-
mensions by sedimentation at a flat water-air interface.
This interface is realized by a water droplet hanging by
surface tension in a top-sealed cylindrical hole (6 mm in
diameter) of a glass cuvette. The volume and thus the
curvature of the droplet is actively regulated by several
computer controlled regulation loops to be completely
flat for a duration of several months providing excellent
long time stability. The species A (diameter σ = 4.5µm)
and B (σ = 2.8µm) have a relative concentration of
ξ = NB/(NA + NB) ≈ 50 % where NA and NB are the
number of particles of both species in the field of view.
The binary mixture prevents the system from crystalliza-
tion. The ratio of the repulsive potential energy versus
thermal energy (causing Brownian motion) can be con-
trolled in situ by an external magnetic field H due to
the superparamagnetic nature of the particles. It is ex-
pressed by the dimensionless system parameter

Γ =
µ0

4π
· H

2 · (πn)3/2

kBT
(ξ · χB + (1− ξ) · χA)2 , (4)

which effectively acts as an inverse temperature or, since
particle number and volume are fixed, can be interpreted
as a dimensionless pressure. Here, n denotes the area
density and is computed via a Voronoi tessellation. χA,B
represent the susceptibilities of species A and B, respec-
tively. After equilibration at low Γ, the system was
cooled down stepwise. With a frame rate of ≈ 0.5 s−1,
sampling times of 2 × 104 seconds for the fluid system
and 1.2 × 105 s for the glassy system were achieved. As
the intrinsic time equals 1/(nD0) ≈ 1.5 × 103 seconds,
this is sufficiently long to probe dynamics up to the re-
laxation time regime. Additional details of the setup and
the active regulation of the interface are described in [31].

The structural relaxation times used in the main text,
are estimated by fitting an exponential decay to the
density-correlation functions Φq(t) as shown in Fig. 4.
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FIG. 4: Experimental (top) and simulational (bottom) in-
coherent density correlation data for different Γ and φ (see
legends) for wavevectors qa = 7.3 (experiment) and qa = 7.4
(simulation) (corresponding to the first peak of the structure
factor S(q)). The dashed lines show stretched-exponential
fits Φq(t) = A exp(−(t/τ)β) with A = 0.80, β = 1.0 (exp.)
and A = 0.58, β = 0.65 (sim., φ < 0.8). For the simula-
tional data, the fitted τ is marked by circles and, addition-
ally, τη = const. · η/µc is indicated by dotted vertical lines,
with shear modulus µc = µ(φc) = 48.8 nkBT and shift factor
const. = 4.6.

SIMULATIONAL ASPECTS

We perform simulations on a 2D binary mixture of
hard disks undergoing Brownian motion employing an
event-driven simulation algorithm [28, 29]. The system
contains N = 16000 particles, is made up of a 50:50 mix-
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ture with diameters dA = 1, dB = 1.4, and is equilibrated
by Newtonian dynamics before data are collected. The
packing fraction, giving the ratio of the area occupied by
the disks to the area of the system, varies from φ = 0.77
to φ = 0.81, hence close to the mode-coupling glass tran-
sition point φc ≈ 0.795 [49]. The shown strain correlation
data is based on at least 150 independent single runs for
each packing fraction. The elastic moduli µ and µ‖ are
determined from particle trajectories as described in [22],
the shear viscosity η is calculated via momentum transfer
at collisions as in [29, 30]. The structural relaxation time
is estimated by fitting a stretched exponential decay to
the density-correlation function as shown in Figure 4.
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FIG. 5: Rescaled mean-squared strain data from BD simula-
tions of a binary hard disk mixture in a glass (upper panel;
φ = 0.81) and a fluid (lower panel; φ = 0.78) state at different
times (see legend). The spherical harmonic strain correlation
functions C4

4 (r, t)/Cs(t) are rescaled to overlap in the far-field
power law decay. Main panels show the 1/rk-power law decay
(dashed black) valid up to r = O(L) (a vertical black dash-
dotted line indicates r = πL), with exponent (upper insets)
k = 2 varying little with time. The contourplots (lower in-
sets) of the long-time limit of Cxy(r, t)/Cxy(r = 0, t) illustrate
the corresponding cos (4θ)-symmetry at nD0t = 256 (upper
panel) and nD0t = 247 (lower panel), respectively.

COARSE GRAINING METHOD

To obtain smooth strain fields from discrete particle
positions, a coarse graining approach following [25] is ap-
plied. Single particle displacements are obtained from
differences of particle positions, ui(ri, t

′, t) = ri(t
′) −

ri(t
′ − t), and then coarse-grained:

u(r, t′, t) =
1

%(r, t′)

N∑
i=1

u(r, t′, t)φ(|r− ri(t
′)|, rc), (5)

where %(r, t′) is the corresponding coarse-grained den-
sity. Running averages over t′ are used to smoothen the
data. Considering the radial symmetry of the collective
mean strain function (CMS) Cxy(r, t), the analysis is im-
plemented in polar coordinates using a Gaussian coarse
graining function:

φ(r, rc) =
1

Dg(rc, σ)

{
exp

(
− r2

2σ2

)
if r < rc

0 else
(6)

with normalization Dg(rc, σ) = 2πσ2
(

1− exp
(
− r2c

2σ2

))
.

Various cut-off radii rc were tested for consistency and
rc/a = 2 was found to be best, since it captures all three
(binary mixture) first-order but no second-order peaks
of the radial pair distribution function. Also the coarse
graining function used by Ref. [7] and a cartesian grid
was tested which gave consistent results (not shown) for
the CMS in the far field (r/a� 1) relevant for the above
analysis. We also integrated up the coarse-grained veloc-
ity field instead of using Eq. (5) as done in Ref. [7], and
found only small quantitative differences.

From the coarse-grained displacement field described
above the strain is obtained by differentiation [25]. The
normalized spatial shear CMS

C̃xy(r, t) =
Cxy(r, t)

Cxy(r = 0, t)
(7)

is sampled for experimental and simulational data, and
shown in the contour plots in Figs. 1 (main text, ex-
periment) and 5 (simulation). We tested that using
the non-linearized form of the strain tensor gives quan-
titative but not qualitative differences to the observed
Eshelby-pattern in liquid states for up to the times con-
sidered. The far-field power-law was fitted in the range
r/a ∈ [5, 12] (r/a ∈ [9, 17] at Γ = 423) for experimen-
tal data and r/a ∈ [10, 22] for simulational data. The
projection on cos(4θ) gives by comparison with Eq. (1)

1

π

∫ 2π

0

dθcos(4θ)C̃xy(r, t)→ 1

Cxy(r = 0, t)︸ ︷︷ ︸
b

Cs(t)

4πnr2
(8)

and with this the relation: Cs(t) = b · Cxy(r = 0, t).
The parameter b is determined by fitting a 1/r2-law to
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the long distance (same range as above) part of this pro-
jection and was found to be constant over time for each
temperature.
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FIG. 6: The global averaged strain O(t) as a function of time
for selected temperatures. While the glass data do not show
a significant global strain, some of the fluid data do. The
inset shows O(t = τ) for fluid states at the α-relaxation time
τ (vertical dashed lines); crosses (circles) are used for the
data (not) shown in the main panel. Data in the fluid state
showing isotropic offsets in the CMS Cxy(r, t) (red symbols in
inset) tend to exhibit larger global strain due to experimental
perturbations as the ones without offsets (black symbols).

From an experimental point of view, extreme care has
to be taken to stabilize the monolayer in the liquid state
(Γ < Γg) in hanging droplet geometry. Some data in
the liquid state show, in addition to the above discussed
Eshelby-patterns, nearly isotropic offsets in the CMS
Cxy(r, t), which are absent in the simulations. They are
assumed to stem from macroscopic shears (i.e. on length-
scales larger than the field of view) due to experimental
perturbations. To independently detect these states, we
investigated the averaged global strain O(t), normalized
by its variance as function of time for various tempera-
tures,

O(t) =
〈εxy(r, t)〉r√〈
ε2xy(r, t)

〉
r

, (9)

where averaging was done over space r, as indicated, and
over different time windows to increase statistics. Fig-
ure 6 shows the time evolution of O(t) for several Γ (only
selected ones are shown, not to overcrowd the main fig-
ure). To compare different temperatures, we take the
global strain at the α-relaxation time, O(t = τ) with
τ indicated by vertical dashed lines in Fig. 6, and plot
this in the inset (all fluid Γ included). Data sets where
isotropic offsets in the CMS were noticed (red symbols)
exhibit large (negative) values for O(t = τ) supporting
the assumption that they originate from global strain in
the colloidal layer. However, the Eshelby-pattern could
still be observed and the analysis of the spatial power

law decay performed, because the isotropic offsets are
eliminated in the projection to C4

4 .

BEYOND THE INCOMPRESSIBILITY
APPROXIMATION

It is straightforward to calculate the transversal collec-
tive mean-squared strains in compressible isotropic sys-
tems from the Fourier-transformed displacement fluctu-
ations. This requires, besides the transversal collective
mean-squared displacement C⊥q (t), also the longitudinal

one, denoted C
‖
q (t):

Cxy(r, t) =
∫
ddq
(2π)d

e−iq·r (10)[(
C⊥(q, t)− C‖(q, t)

) −q2xq2y
q2 + C⊥(q, t)

q2x+q
2
y

4

]
,

Starting from Ref. [22], the generalized hydrodynamics
approximation leads to a concise relation for the lon-
gitudinal mean-squared displacements using a temporal
Laplace transformation, C(s) =

∫∞
0
dte−stC(t):

C
‖
gH(q, s) =

2D0/s

s+ q2D0

kBTn

(
1
κT + sG‖(s)

) . (11)

It contains the generalized frequency-dependent longitu-
dinal stress modulus, G‖(s) = GB(s) + (2 − 2/d)G⊥(s)
in d dimensions, where the shear modulus was defined
in the main text and the bulk modulus is given by [38]:
GB(t) = n

kBT
〈σB(tQ)∗ σB〉 with σB = 1

d

∑
α σαα+p and

pressure p.

Simulation Experiment

φ µ
nkBT

µ‖

nkBT
Γ µ

nkBT
µ‖

nkBT

0.795 48.8 355.2

0.8 59.9 424.1 188 14 37

0.805 72.6 505.6 193 18 36

0.81 90.4 618.7 196 20 49

Theory (MCT) 208 31 129

Γ µ
nkBT

µ‖

nkBT
231 42 182

107 0 4.8 423 99 403

114 0 4.8

118 21.9 52.7

TABLE I: Transversal µ and longitudinal µ‖ modulus from
simulation, theory (MCT) and experiment.

Clearly, longitudinal displacement fluctuations stay
bounded for all times (see also Fig. 7, top panel):

C
‖
gH(q, t) ≤ C‖gH(q, t→∞) =

2kBTnκ
T

q2
. (12)

The approximation of an incompressible dispersion sets
κT = 0 and thus neglects longitudinal displacements.
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The corrections to the asymptotic limits in Eq. (3) can
now be obtained. In fluid states, the finite longitudi-
nal displacements become negligible for long times, and
Cs(t → ∞) → 2kBTn

η t remains valid. In glass states,

Cs(t→∞) = 2kBTn
(
1/µ− 1/µ‖

)
follows with longitu-

dinal modulus µ‖ = G‖(t → ∞) + 1
κT

. To evaluate the
error of the incompressibility assumption, table I contains
the glass moduli of the considered systems.

MODE COUPLING APPROXIMATION
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FIG. 7: Top: Numerical results for the longitudinal collective
mean-squared displacement C‖(q, t) from MCT for various
wavevectors q and values for Γ in the fluid and the glass state.
Bottom: Numerical results for the long wavelength limit of the
longitudinal (dashed) and transversal (solid) memory kernel

G‖(q, t), G⊥(q, t) respectively.

Performing the standard MCT approximation [38], the
stress kernels take the explicit form (in d dimensions, for

monodisperse particles):

G(q, t) =
n2

2kBT

∫
ddk

(2π)d
1

q2
[
kck + (q− k)c|k−q|

]
[
kck + (q− k)c|k−q|

]
SkS|k−q|Φk(t)Φ|k−q|(t) , (13)

where Φq(t) = 〈δ%∗q(t)δ%q〉/Sq is the normalized density
correlator and ck the direct correlation function (Sk =
1/(1 − nck)). It connects to the (longitudinal) memory
function of the equations of motion for density correlators
mq(t) = kBT

n q ·G(q, t) · q/q2. The limit of q → 0 gives
the familiar MCT expression for the macroscopic moduli
[38]:

G‖(t) =
n2

2kBT

∫
ddk

(2π)d

(
ck +

(k · q)2

kq2
c′k

)2

S2
kΦ2

k(t) ,

and

G⊥(t) =
n2

2kBT

∫
ddk

(2π)d
k2xk

2
y (

1

k
c′kSkΦk(t))2 .

NUMERICAL DETAILS

Based on the numerical solutions of the MCT equa-
tions [49] and Eqs. (2,13) both, the longitudinal C‖(q, t)
and the transversal part C⊥(q, t) of the mean-squared
displacement correlator were calculated. Whereas the
latter was already shown (Fig. 2) and discussed in the
main text, the former is shown in Fig. 7, top panel, to
confirm that the longitudinal component stays bounded
at all times. G(q, t) was calculated for two fluid states
Γ = 107, 114 and one glass state Γ = 118 with the mode-
coupling glass transition at Γc = 115. The resulting long
wavelength limit of the tranversal G⊥(q, t) and longitu-
dinal G‖(q, t) part of the memory kernel is shown in Fig.
7, bottom panel. Here, the integrals over wavevectors
q and time t are discretized to sums using a linear 250-
node grid for q and a semi-logarithmic grid for t. The
limit of small q is realized by choosing the smallest q-
vector qa = 0.4606 (see inset of Fig. 2, main text). The
time grid consists of 60 blocks containing 128 equally
spaced time steps doubling from one block to the next
one, creating a grid spanning over 15 decades in time.
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