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Influence of hydrodynamic interactions on the dynamics
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PACS. 82.70Dd – Colloids.
PACS. 05.40−a – Fluctuation phenomena, random processes, noise and Brownian motion.
PACS. 47.15Pn – Laminar suspensions.

Abstract. – We study the influence of hydrodynamic interactions on the self-diffusion of
super-paramagnetic colloidal particles suspended in water. The colloids interact via repulsive
dipolar forces due to an applied magnetic field, and their motion is effectively confined to
two dimensions. By comparing experimental data with the results from extensive computer
simulations, where the water flow fields are treated at the Rotne-Prager level, we show that the
diffusivity is enhanced at all times due to hydrodynamic interactions. The enhancement effect
becomes stronger with increasing particle density, but is almost unaffected by the temperature.

Introduction. – The dynamics of colloidal particles in suspensions are largely affected by
hydrodynamic interactions (HI) mediated by the solvent [1]. In the presence of short-range
interactions between the colloidal particles it has been shown that the self-diffusion of the
colloids is slowed down by the HI [2]. This has been substantiated also by detailed mode-
coupling calculations [1]. On the contrary, in the presence of long-range interactions the
situation is less clear. It was conjectured recently [3] that the self-diffusion in this case may
become enhanced by HI. This conjecture was based i) on a comparison of Brownian dynamics
simulations without HI with experimental results, and ii) on (partially uncontrolled) theoretical
approximations of the diffusion-coefficient within a moment expansion around t = 0. It is thus
not really clear, whether the differences between simulations and experiments for long times
are really due to HI.

In this letter we study in detail the role of HI on the diffusion of long-range interacting
colloidal particles in two dimensions. To this end, we compare quantitatively the results
from experiments of colloids interacting via a repulsive 1/r3 potential with the results from
extensive computer simulations with HI. Our simulations provide excellent agreement with the
experimental results. By comparison with Brownian dynamics simulations without HI we find
that the HI enhance the diffusion for all times at all relevant temperatures and densities. We
also demonstrate how the confined two-dimensional dynamics of dipolar colloidal particles in
the presence of a three-dimensional solvent flow can be faithfully simulated.
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Experimental setup. – Our system is composed of spherical colloidal particles of radius
a = 2.35 µm confined by gravity to the water/air interface of a drop that is suspended from a
hollow glass cylinder due to surface tension. The top of the cylinder of 8 mm inner diameter and
1 mm height is sealed by a microscope cover sheet, which is glued onto the cylinder. To provide
a flat interface the curvature of the water/air interface is adjusted by computer controlling
the content of liquid using a micrometrical syringe. In this way a difference less than 1 µm
in the height of the interface between the center and the border of the drop can be obtained.
The experiments have been performed in the center of the drop where no appreciable changes
(< 1%) in the particle concentration could be observed. Also both the amplitude of capillary
waves of the interface and thermal fluctuations of the vertical position of the particles can be
estimated to be of the order of nanometers (the mass density of the particles is 1.7 g/cm3).
Our samples thus are almost ideal two-dimensional (2D) systems.

The particles are super-paramagnetic due to Fe2O3-doping and a magnetic field B ap-
plied perpendicular to the interface induces magnetic dipole moments M that lead to
a repulsive interparticle potential v(r) = (µ0/4π) M2/r3. For the weak field intensities
used we find M = χeffB with an effective magnetic susceptibility of the particles χeff =
(7.62 ± 0.2) × 10−11 Am2/T. Therefore, we can define a scaled interaction strength Γ =
(µ0/4π)(χeffB)2n3/2/kBT (n denotes the 2D volume fraction of the particles).

An optical microscope is placed above the sample and images are monitored by means of a
CCD-camera and evaluated on a PC. From the filmed configurations, particle coordinates are
extracted and both radial distribution functions g(r) and mean-square displacements 〈[∆r(t)]2〉
calculated. About 103 particles are observed in a square box of 520× 440 µm2, and averages
are performed over typically 100 independent configurations.

By extrapolating the diffusion coefficient D(t) = 〈∆r2(t)〉/4t towards t → 0 [4], we ob-
tain the short-time self-diffusion coefficient D0. In the range of 2D particle concentrations
studied (n < 6× 10−3µm−2) we did not observe any dependence of D0 upon n. We found
D0 = (1.08± 0.02) kBT/6πηa, which is slightly higher than the value expected from the Stokes-
Einstein equation. The difference of 8% may be attributed to the proximity of the particles
to the interface: With respect to the hydrodynamic interactions, we can replace a system
of spherical particles at a free interface (i.e. having slip boundary condition) by a layer of
dumbbells in an infinite medium. These dumbbells diffuse in the plane of motion and take the
solvent flow field caused by the water/air interface into account (method of images, see [5]).
Since half of the friction coefficient of a dumbbell is less than that of the original sphere [6], one
should expect the particles at the interface to have a higher D0 than the Stokes-Einstein value.

Brownian dynamics simulations with HI. – The Brownian dynamics with HI can be
described by the Smoluchowski equation for the probability P (r1, . . . , rN , t) to find the colloidal
particles at positions r1, . . . , rN at time t [7],

∂tP = ∂iµDiµ,jν (−βFjν + ∂jν)P . (1)

Here ∂iµ ≡ ∂/∂xiµ (i denotes the particle index and µ the Cartesian component), β = 1/kBT ,
Fiµ = −∂iµ

∑
j v(rij) with rij = |ri − rj |, and we applied the summation convention with

respect to repeated indices. Diµ,jν is the hydrodynamic diffusion tensor appropriate for
particles separated by large distances (far-field expansion up to the Rotne-Prager level [7]),
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Equation (1) corresponds to the Langevin equation (in Ito-interpretation)

ẋiµ(t) = βDiµ,jνFjν + ∂jνDiµ,jν + σiµ,jνηjν(t) , (3)
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where ηiµ(t) is a Gaussian-distributed noise with zero mean and correlator 〈ηiµ(t1) ηjν(t2)〉 =
2δij δµν δ(t1 − t2); the matrix σiµ,jν results from a Cholesky decomposition of the diffusion
tensor.

Equation (3) is discretized according to an Euler scheme and solved by using periodic
boundary conditions. For calculating the direct dipolar forces Fiµ, the simulation square
is periodically continued in two dimensions. These calculations are speeded up by using
interpolations of stored force values with respect to a dense grid of interparticle vectors (taking
symmetry relations into account). For calculating the hydrodynamic forces associated with
the solvent flow we periodically continue the system in the direction perpendicular to the
plane of motion also. By employing this method of images, we ensure that the solvent flow
through the drop surfaces is zero. The Ewald summation method [8] then is used to take
into account the long-range nature (∼ 1/rij) of the Rotne-Prager tensor Diµ,jν . Our periodic
continuation corresponds to a plane of motion located exactly in the middle of the upper and
lower water drop surfaces. However, in the experiments the particles are close to the water/air
interface. This discrepancy between the situations in the experiment and in the simulations is
of minor importance for the far-distant images, but for the closest images should be corrected.
As explained above, the particles together with their closest images on the other side of the
water/air interface should be replaced by dumbbells [5] (for a recent detailed treatment of
hydrodynamic boundary effects for both solid and free surfaces see also [9] and references
therein). We approximate this situation by choosing spheres enclosing the dumbbells in the
numerics, that means the effective particle diameter is twice as large as in the real system.

The natural time scale used in the system is given by τ0 = 1/nD0, which is the time needed
for a particle to move a typical interparticle distance n−1/2 in the absence of any interac-
tions. (Note that by considering quantities normalized with respect to D0 the experimental
enhancement effect discussed above is scaled out.) We have used a fixed time step 5× 10−4τ0
to integrate eq. (3).

Comparison and discussion of the experimental and numerical results. – First we check the
reliability and quality of the numerical scheme in comparison with the experiments. Figure 1
shows, for Γ = 8.2 and n = 3.24× 10−3µm−2, the pair correlation functions g(r) as a function
of rn1/2 obtained from the experiments (full circles, [3]), the simulations without HI (solid
line), and the simulations with HI (dashed line). As expected, all curves agree perfectly, since
the HI is not affecting any static properties.

In fig. 2 we consider the normalized diffusion coefficient D(t)/D0 as a function of time
t/τ0 corresponding to the data presented in fig. 1. As can be seen from the figure, only the
results for D(t) from the simulations with HI agree with the experimental data, and D(t) is
for all times t larger than the “Brownian diffusivity” D(B)(t) in the absence of HI. As was
shown in [3], an enhancement effect can already be recognized at short times by considering
the initial slope D′(0). In general we can write, based on a short-time expansion of the
Smoluchowski equation (1), D′(0) = −D2

0〈KiµKiµ〉/4N , where Kiµ = Diµ,jνFjν/D0, N is the
number of particles and 〈KiµKiµ〉/4N might be calculated from static structure functions.
The basic mechanism leading to an increase of D′(0) becomes already clear, however, by
considering only two particles and the HI in Oseen approximation [7], for which we obtain

K
(12)
µ = (1− 3a/2r12)F

(12)
µ . Thus the effective force K(12) is smaller than F (12) due to the HI

and accordingly D′(0) is enhanced. The important point seen in fig. 2 is that the enhancement
effect increases with t and is largest for the long-time diffusivity D∞.

In order to show how the HI effect varies with the interaction strength and the density, we
plot in fig. 3 the time-dependent diffusion coefficient for a) various n and fixed Γ = 8.2, and b)
various Γ and fixed n = 1.86× 10−3µm−2. All simulated curves show an excellent agreement
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Fig. 1. – Comparison of the pair correlation functions in the experiments with those in the simulations
for Γ = 8.2 and n = 3.24× 10−3µm−2.

Fig. 2. – Comparison of the normalized time-dependent diffusion coefficients in the experiments with
those in the simulations for the same parameters as in fig. 1.

with the experimental results (only a slight deviation occurs in the case of the highest density
n = 6.02× 10−3µm−2 and the largest interaction strength Γ = 8.2). The diffusivity becomes
smaller with decreasing n and increasing Γ. More important, while it is difficult to determine
the long-time diffusivities D∞ = limt→∞D(t) in the experiments [10], this is no problem in
the simulations and we can thus quantify the enhancement effect in the long-time limit. As
shown in the inset of fig. 3a, the difference between D∞ and D(B)

∞ = limt→∞D(B)(t) becomes,
for fixed Γ, larger with increasing n. Note that D(B)

∞ does not depend on n for fixed Γ, i.e.
density variations can be fully taken into account by a simple rescaling of Γ. This is due to
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Fig. 3. – Diffusion coefficents D(t)/D0 as a function of time t, a) for fixed Γ = 8.2 and various densities
n, and b) for fixed density n = 1.86×10−3µm−2 and various Γ. The symbols are from experiment, the
lines from simulation. The insets show the long-time diffusion constants D∞ (closed symbols, with

HI) and D(B)
∞ (open symbols, without HI). The lines in the insets are drawn as a guide for the eye.
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the dipolar interaction potential, which provides no characteristic length scale. For fixed n,
the enhancement is almost independent of temperature (Γ), see the inset of fig. 3b.

Concluding remarks. – We have achieved an almost full quantitative agreement between
simulations and experiments despite of our approximate way to model the influence of the
water/air interface on the flow field [11]. This approximation may cause the slight deviations
to occur, which we found at the highest density and interaction strength. Less dominant
contributions to these deviations may arise from the neglected polydispersity in the particle
interactions and particle diameters, the small curvature of the water/air interface at the bottom
of the drop, and the slightly imperfect confinement of the particle motion. In addition we have
neglected the rotational degrees of freedom of the colloidal particles, which in general couple
to the translational degrees of freedom.

Our simulations have convincingly shown that HI lead to an increase of the time-dependent
diffusivity of colloidal particles interacting via a repulsive 1/r3 potential in two dimensions.
This also holds in the long-time limit. We expect the enhancement for long-range interactions
to be present also in higher dimensions, as is suggested by an approximate mode-coupling
calculation for a three-dimensional system of particles interacting via screened longer-range
Coulomb potential [12]. From a general viewpoint, when considering a repulsive potential of
form 1/rα, the question arises whether there exists a critical value αc, above which HI no
longer enhance but slow down the diffusion, as is usually observed for short-range interacting
particles.
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